Page:EB1911 - Volume 13.djvu/241

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
228
HELIOMETER
  


double web is pointed symmetrically on one of the divisions of scale A, then to move the other double web by the screw S until it is symmetrically pointed on the adjoining division of scale B. By turning the quick acting screw P (fig. 13) to the right, the cushion C (which is faced with india-rubber) presses the paper ribbon (shown in fig. 13) against the index-edge and type-wheels, and thus the beautifully cut divisions of the micrometer-head, the numbers marking the 1/100 parts of the head, the index and the total number of revolutions are all sharply embossed together upon the paper ribbon. Fig.  14 shows the record of several successive paintings on the same scale as that given by the micrometer. The reverse motion of P automatically moves the paper ribbon forward, ready to receive the next impression. It must be mentioned that the pressure of the cushion C on the type-wheels has no influence whatever upon the micrometer-screw, because the type-wheels are mounted on a hollow cylindrical axis, concentric with the axis of the screw, but entirely disconnected from the screw itself. The only connexion between the type-wheel and the screw-head S is by the pin p (which is screwed into S), the cylindrical end of which acts in a slot cut in the type-wheel. To remedy drawback (2) Repsolds provided for the Yale heliometer an additional handle for motion in position angle, intermediate in velocity between the original quick and slow motions.

From Engineering, vol. xlix.Fig. 15.

In the 7-in. heliometer, completed in 1887 for the Royal Observatory at the Cape of Good Hope, Repsolds, on Gill’s suggestion, introduced the following improvements: (a) Four different speeds of motion in position angle were provided. The quickest movement is given by the hand-ring, 73 (fig. 15). This ring runs between friction wheels and is provided with teeth on its inner periphery, and these teeth transmit motion to a pinion on a spindle having at its other end another pinion which, through an intermediate wheel, rotates the heliometer tube. The transmission spindle, just mentioned, carries at its end a head, 74, which, if turned directly, gives the second speed. The slowest speed is given by means of a tangent screw which is carried by a ball-bearing on the flange of the telescope-sleeve, whilst its nut is double-jointed to a ring that encircles the flange of the heliometer-tube. This ring is provided with a clamping screw, which, through the intervention of bevel-gear and rods, is operated by means of the hand-wheel 78. With similar bevel-gear and rods the tangent screw is connected to the hand-wheel, 79, by which the observer communicates the fourth or slowest motion in position angle. Finally the hand-wheel 80 is connected by gearing to the rod carrying the hand-wheel 79, and it can thus be used to give the latter a more rapid motion than if used direct; this constitutes the third speed of movement.

(b) In lieu of oil-lamps, small, conveniently placed incandescent electric 6-volt lamps are employed; and these are fitted with suitable switches and variable resistances. Thus the scales, the position- and declination-circles, the field of view, the heads of all the micrometer-microscopes, the focusing scale, &c., are read without the aid of a hand-lamp and with an amount of illumination that can be regulated at the observer’s pleasure.

(c) A button in the centre of the position-angle handle (74) connects with a chronograph which enables the observer to record the instant of observation. Little card-holders (81) (also illuminated) enable the astronomer to enter beforehand the R.A. and Dec. of the object to be observed, the scale divisions to be pointed upon, and thus, in measures of distance, with the aid of the chronograph and printing micrometer, enable the observer to adjust the instrument for observation and obtain a record of his observations without the aid of a hand-lamp or the necessity to make any records in his notebook. In observations of position angle one of the two tablets 81 can be used to record the readings.

(d) The scales are made of iridio-platinum instead of silver, and the magnifying power of the reading microscope is increased fourfold (viz. to 100 diameters). A special microscope is introduced for determining the division errors of the scales. It enables the observer to compare any division-interval on one half of either scale with any corresponding interval on the other scale. With this apparatus Gill was enabled (Annals Cape Obs. vii. 29-42, and Monthly Notices, R.A.S., xlix. 105–115) to determine the division error of every line on both scales with a probable error corresponding to ± 0″.0092 arc.

(e) A position-micrometer is attached to the finder to enable the observer to select comparison stars for observation with some unexpected object. Thus a comet may be encountered in the morning dawn or evening twilight, and without such an adjunct the astronomer may lose the whole available opportunity for observation in the vain endeavour to find a suitable comparison-star. But with such a position-micrometer of large field he has no difficulty. Directing the finder to the comet, he has at once in the field of view all available comparison stars. Having selected the most suitable one he directs the axis of the finder to the estimated middle point between the comet and the star, turns the finder-micrometer in position angle until the images of comet and star lie symmetrically between the parallel position wires, and then turns the micrometer screw (which moves the distance-wires symmetrically from the centre in opposite directions) till one wire bisects the comet and the other the star. The reading of the position-circle of the finder is then the reading to which the position-circle of the heliometer should be set, and from the readings of the micrometer-screw he finds, by a convenient table, the proper settings of the heliometer scales in distance. When the scales and position-circle of the heliometer have been set to these readings, the comet and the selected comparison-star appear together in the field of view.

Fig. 15 shows the very convenient arrangement of the eye-end of the instrument. The disk, 30 with its small projecting handle enables the 2 segments of the divided object to be moved rapidly or with any required delicacy relative to each other. The disk 32 operates the wire gauze screens for equalizing the brightness of the two stars under observation. The dial between 30 and 32 indicates the screen in use. 18 clamps and 19 gives slow motion in declination; 20 clamps and 21 gives slow motion in right ascension. The two handles 82 serve for manipulating the instrument. The microscopes adjoining 82 read the position and declination circles; for, by an ingenious arrangement of prisms and screens, the images of both circles can be read by each single microscope as shown in fig. 16, thus avoiding the necessity for the employment of two additional micrometers.

Experience has shown that there is little that can be advantageously changed to improve this instrument either in convenience or precision of working. A series of observations can be easily and more accurately accomplished with the Cape heliometer in half an hour; with the Oxford heliometer it would occupy 2 hours, and with the 4 in. Repsold heliometer (fig. 9) 1 hour. Heliometers of 6 to 8 in. aperture have subsequently been constructed by Repsolds on these plans for Göttingen, Bamberg, Leipzig and the Kuffner Observatory (near Vienna), and all of them have made important contributions to astronomy of precision.

 From Engineering, vol. xlix.
Fig. 16.

Heliometer observations of distance in their most refined sense cannot be considered absolute measures of angles. Essentially the scale-value of the instrument depends on the relation of the focal