little soluble in cold water, less so in dilute hydrochloric acid, more so in the strong acid, and readily soluble in hot water, from which on cooling, the excess of dissolved salt separates out in silky rhombic needles. It melts at 485° and solidifies on cooling to a translucent, horn-like mass; an early name for it was plumbum corneum, horn lead. A basic chloride, Pb(OH)Cl, was introduced in 1849 by Pattinson as a substitute for white lead. Powdered galena is dissolved in hot hydrochloric acid, the solution allowed to cool and the deposit of impure lead chloride washed with cold water to remove iron and copper. The residue is then dissolved in hot water, filtered, and the clear solution is mixed with very thin milk of lime so adjusted that it takes out one-half of the chlorine of the PbCl2. The oxychloride comes down as an amorphous white precipitate. Another oxychloride, PbCl2·7PbO, known as “Cassel yellow,” was prepared by Vauquelin by fusing pure oxide, PbO, with one-tenth of its weight of sal ammoniac. “Turner’s yellow” or “patent yellow” is another artificially prepared oxychloride, used as a pigment. Mendipite and matlockite are mineral oxychlorides.
Lead, fluoride, PbF2, is a white powder obtained by precipitating a lead salt with a soluble fluoride; it is sparingly soluble in water but readily dissolves in hydrochloric and nitric acids. A chloro-fluoride, PbClF, is obtained by adding sodium fluoride to a solution of lead chloride. Lead bromide, PbBr2, a white solid, and lead iodide, PbI2, a yellow solid, are prepared by precipitating a lead salt with a soluble bromide or iodide; they resemble the chloride in solubility.
Lead carbonate, PbCO3, occurs in nature as the mineral cerussite (q.v.). It is produced by the addition of a solution of lead salt to an excess of ammonium carbonate, as an almost insoluble white precipitate. Of greater practical importance is a basic carbonate, substantially 2PbCO3·Pb(OH)2, largely used as a white pigment under the name of “white lead.” This pigment is of great antiquity; Theophrastus called it ψιμύθιον, and prepared it by acting on lead with vinegar, and Pliny, who called it cerussa, obtained it by dissolving lead in vinegar and evaporating to dryness. It thus appears that white lead and sugar of lead were undifferentiated. Geber gave the preparation in a correct form, and T. O. Bergman proved its composition. This pigment is manufactured by several methods. In the old Dutch method, pieces of sheet lead are suspended in stoneware pots so as to occupy the upper two-thirds of the vessels. A little vinegar is poured into each pot; they are then covered with plates of sheet lead, buried in horse-dung or spent tanner’s bark, and left to themselves for a considerable time. By the action of the acetic acid and atmospheric oxygen, the lead is converted superficially into a basic acetate, which is at once decomposed by the carbon dioxide, with formation of white lead and acetic acid, which latter then acts de novo. After a month or so the plates are converted to a more or less considerable depth into crusts of white lead. These are knocked off, ground up with water, freed from metal-particles by elutriation, and the paste of white lead is allowed to set and dry in small conical forms. The German method differs from the Dutch inasmuch as the lead is suspended in a large chamber heated by ordinary means, and there exposed to the simultaneous action of vapour of aqueous acetic acid and of carbon dioxide. Another process depends upon the formation of lead chloride by grinding together litharge with salt and water, and then treating the alkaline fluid with carbon dioxide until it is neutral. White lead is an earthy, amorphous powder. The inferior varieties of commercial “white lead” are produced by mixing the genuine article with more or less of finely powdered heavy spar or occasionally zinc-white (ZnO). Venetian white, Hamburg white and Dutch white are mixtures of one part of white lead with one, two and three parts of barium sulphate respectively.
Lead sulphide, PbS, occurs in nature as the mineral galena (q.v.), and constitutes the most valuable ore of lead. It may be artificially prepared by leading sulphur vapour over lead, by fusing litharge with sulphur, or, as a black precipitate, by passing sulphuretted hydrogen into a solution of a lead salt. It dissolves in strong nitric acid with the formation of the nitrate and sulphate, and also in hot concentrated hydrochloric acid.
Lead sulphate, PbSO4, occurs in nature as the mineral anglesite (q.v.), and may be prepared by the addition of sulphuric acid to solutions of lead salts, as a white precipitate almost insoluble in water (1 in 21,739), less soluble still in dilute sulphuric acid (1 in 36,504) and insoluble in alcohol. Ammonium sulphide blackens it, and it is coluble in solution of ammonium acetate, which distinguishes it from barium sulphate. Strong sulphuric acid dissolves it, forming an acid salt, Pb(HSO4)2, which is hydrolysed by adding water, the normal sulphate being precipitated; hence the milkiness exhibited by samples of oil of vitriol on dilution.
Lead nitrate, Pb(NO3)2, is obtained by dissolving the metal or oxide in aqueous nitric acid; it forms white crystals, difficultly soluble in cold water, readily in hot water and almost insoluble in strong nitric acid. It was mentioned by Libavius, who named it calx plumb dulcis. It is decomposed by heat into oxide, nitrogen peroxide and oxygen; and is used for the manufacture of fusees and other deflagrating compounds, and also for preparing mordants in the dyeing and calico-printing industries. Basic nitrates, e.g. Pb(NO3)OH, Pb3O(OH)2(NO3)2, Pb3O2(OH)NO3, &c., have been described.
Lead Phosphates.—The normal ortho-phosphate, Pb3(PO4)2, is a white precipitate obtained by adding sodium phosphate to lead acetate; the acid phosphate, PbHPO4, is produced by precipitating a boiling solution of lead nitrate with phosphoric acid; the pyrophosphate and meta-phosphate are similar white precipitates.
Lead Borates.—By fusing litharge with boron trioxide, glasses of a composition varying with the proportions of the mixture are obtained; some of these are used in the manufacture of glass. The borate, Pb2B6O11·4H2O, is obtained as a white precipitate by adding borax to a lead salt; this on heating with strong ammonia gives PbB2O4·H2·O, which, in turn, when boiled with a solution of boric acid, gives PbB4O7·4H2O.
Lead silicates are obtained as glasses by fusing litharge with silica; they play a considerable part in the manufacture of the lead glasses (see Glass).
Lead chromate, PbCrO4, is prepared industrially as a yellow pigment, chrome yellow, by precipitating sugar of lead solution with potassium bichromate. The beautiful yellow precipitate is little soluble in dilute nitric acid, but soluble in caustic potash. The vermilion-like pigment which occurs in commerce as “chrome-red” is a basic chromate, Pb2CrO5, prepared by treating recently precipitated normal chromate with a properly adjusted proportion of caustic soda, or by boiling it with normal (yellow) potassium chromate.
Lead acetate, Pb(C2H3O2)2·3H2O (called “sugar” of lead, on account of its sweetish taste), is manufactured by dissolving massicot in aqueous acetic acid. It forms colourless transparent crystals, soluble in one and a half parts of cold water and in eight parts of alcohol, which on exposure to ordinary air become opaque through absorption of carbonic acid, which forms a crust of basic carbonate. An aqueous solution readily dissolves lead oxide, with formation of a strongly alkaline solution containing basic acetates (Acetum Plumbi or Saturni). When carbon dioxide is passed into this solution the whole of the added oxide, and even part of the oxide of the normal salt, is precipitated as a basic carbonate chemically similar, but not quite equivalent as a pigment, to white lead.
Analysis.—When mixed with sodium carbonate and heated on charcoal in the reducing flame lead salts yield malleable globules of metal and a yellow oxide-ring. Solutions of lead salts (colourless in the absence of coloured acids) are characterized by their behaviour to hydrochloric acid, sulphuric acid and potassium chromate. But the most delicate precipitant for lead is sulphuretted hydrogen, which produces a black precipitate of lead sulphide, insoluble in cold dilute nitric acid, less so in cold hydrochloric, and easily decomposed by hot hydrochloric acid with formation of the characteristic chloride. The atomic weight, determined by G. P. Baxter and J. H. Wilson (J. Amer. Chem. Soc., 1908, 30, p. 187) by analysing the chloride, is 270.190 (O = 16).
The metal itself is not used in medicine. The chief pharmacopoeial salts are: (1) Plumbi oxidum (lead oxide), litharge. It is not used internally, but from it is made Emplastrum Plumbi (diachylon plaster), which is an oleate of lead and is contained in emplastrum hydrargeri, emplastrum plumbi iodidi, emplastrum resinae, emplastrum saponis. (2) Plumbi Acetas (sugar of lead), dose 1 to 5 grains. From this salt are made the following preparations: (a) Pilula Plumbi cum Opio, the strength of the opium in it being 1 in 8, dose 2 to 4 grains; (b) Suppositoria Plumbi composita, containing lead acetate, opium and oil of theobroma, there being one grain of opium in each suppository; (c) Unguentum Plumbi Acetatis; (d) Liquor Plumbi Subacetatis Fortior, Goulard’s extract, strength 24% of the subacetate; this again has a sub-preparation, the Liquor Plumbi Subacetatis Dilutis, called Goulard’s water or Goulard’s lotion, containing 1 part in 80 of the strong extract; (e) Glycerinum Plumbi Subacetatis, from which is made the Unguentum Glycerini Plumbi Subacetatis. (3) Plumbi Carbonas, white lead, a mixture of the carbonate and the hydrate, a heavy white powder insoluble in water; it is not used internally, but from it is made Unguentum Plumbi Carbonatis, strength 1 in 10 parts of paraffin ointment. (4) Plumbi Iodidium, a heavy bright yellow powder not used internally. From it are made (a) Emplastrum Plumbi Iodidi, and (b) Unguentum Plumbi Iodidi. The strength of each is 1 in 10.
Applied externally lead salts have practically no action upon the unbroken skin, but applied to sores, ulcers or any exposed mucous membranes they coagulate the albumen in the tissues themselves and contract the small vessels. They are very astringent, haemostatic and sedative; the strong solution of the