regarded as determined by the intersections of the refracted rays. His researches on refraction were less fruitful; he assumed the angles of incidence and refraction to be in the constant ratio of 8 to 5, and the rainbow, in which he recognized four colours, orange, green, blue and purple, to be formed by rays reflected in the drops along the sides of an octagon. Porta’s fame rests chiefly on his Magia naturalis sive de miraculis rerum naturalium, of which four books were published in 1558, the complete work of twenty books appearing in 1589. It attained great popularity, perhaps by reason of its astonishing medley of subjects—pyrotechnics and perfumery, animal reproduction and hunting, alchemy and optics,—and it was several times reprinted, and translated into English (with the title Natural Magick, 1658), German, French, Spanish, Hebrew and Arabic. The work contains an account of the camera obscura, with the invention of which the author has sometimes been credited; but, whoever the inventor, Porta was undoubtedly responsible for improving and popularizing that instrument, and also the magic lantern. In the same work practical applications of lenses are suggested, combinations comparable with telescopes are vaguely treated and spectacles are discussed. His De Refractione, optices parte (1593) contains an account of binocular vision, in which are found indications of the principle of the stereoscope.
§ 7. The empirical study of lenses led, in the opening decade of the 17th century, to the emergence of the telescope from its former obscurity. The first form, known as the Dutch or Galileo telescope, consisted of a convex and a concave lens, a combination which gave erect images; the later form, now known as the “Keplerian” or “astronomical” telescope (in contrast with the earlier or “terrestrial” telescope) consisted of two convex lenses, which gave inverted images. With the microscope, too, advances were made, and it seems probable that the compound type came into common use about this time. These single instruments were followed by the invention of binoculars, i.e. instruments which permitted simultaneous vision with both eyes. There is little doubt that the experimental realization of the telescope, opening up as it did such immense fields for astronomical research, stimulated the study of lenses and optical systems. The investigations of Maurolycus were insufficient to explain the theory of the telescope, and it was Kepler who first determined the principle of the Galilean telescope in his Dioptrice (1611), which also contains the first description of the astronomical or Keplerian telescope, and the demonstration that rays parallel to the axis of a plano-convex lens come to a focus at a point on the axis distant twice the radius of the curved surface of the lens, and, in the case of an equally convex lens, at an axial point distant only once the radius. He failed, however, to determine accurately the case for unequally convex lenses, a problem which was solved by Bonaventura Cavalieri, a pupil of Galileo.
Early in the 17th century great efforts were made to determine the law of refraction. Kepler, in his Prolegomena ad Vitellionem (1604), assiduously, but unsuccessfully, searched for the law, and can only be credited with twenty-seven empirical rules, really of the nature of approximations, which he employed in his theory of lenses. The true law—that the ratio of the sines of the angles of incidence and refraction is constant—was discovered in 1621 by Willebrord Snell (1591–1626); but was published for the first time after his death, and with no mention of his name, by Descartes. Whereas in Snell’s manuscript the law was stated in the form of the ratio of certain lines, trigonometrically interpretable as a ratio of cosecants, Descartes expressed the law in its modern trigonometrical form, viz. as the ratio of the sines. It may be observed that the modern form was independently obtained by James Gregory and published in his Optica promota (1663). Armed with the law of refraction, Descartes determined the geometrical theory of the primary and secondary rainbows, but did not mention how far he was indebted to the explanation of the primary bow by Antonio de Dominis in 1611; and, similarly, in his additions to the knowledge of the telescope the influence of Galileo is not recorded.
§ 8. In his metaphysical speculations on the system of nature, Descartes formulated a theory of light at variance with the generally accepted emission theory and showing some resemblance to the earlier views of Aristotle, and, in a smaller measure, to the modern undulatory theory. He imagined light to be a pressure transmitted by an infinitely elastic medium which pervades space, and colour to be due to rotatory motions of the particles of this medium. He attempted a mechanical explanation of the law of refraction, and came to the conclusion that light passed more readily through a more highly refractive medium. This view was combated by Pierre de Fermat (1601–1665), who, from the principle known as the “law of least time,” deduced the converse to be the case, i.e. that the velocity varied inversely with the refractive index. In brief, Fermat’s argument was as follows: Since nature performs her operations by the most direct routes or shortest paths, then the path of a ray of light between any two points must be such that the time occupied in the passage is a minimum. The rectilinear propagation and the law of reflection obviously agree with this principle, and it remained to be proved whether the law of refraction tallied.
Although Fermat’s premiss is useless, his inference is invaluable, and the most notable application of it was made in about 1824 by Sir William Rowan Hamilton, who merged it into his conception of the “characteristic function,” by the help of which all optical problems, whether on the corpuscular or on the undulator theory, are solved by one common process. Hamilton was in possession of the germs of this grand theory some years before 1824, but it was first communicated to the Royal Irish Academy in that year, and published in imperfect instalments some years later. The following is his own description of it. It is of interest as exhibiting the origin of Fermat’s deduction, its relation to contemporary and subsequent knowledge, and its connexion with other analytical principles. Moreover, it is important as showing Hamilton’s views on a very singular part of the more modern history of the science to which he contributed so much.
“Those who have meditated on the beauty and utility, in theoretical mechanics, of the general method of Lagrange, who have felt the power and dignity of that central dynamical theorem which he deduced, in the Mécanique analytique . . ., must feel that mathematical optics can only then attain a coordinate rank with mathematical mechanics . . ., when it shall possess an appropriate method, and become the unfolding of a central idea. . . . It appears that if a general method in deductive optics can be attained at all, it must flow from some law or principle, itself of the highest generality, and among the highest results of induction. . . . [This] must be the principle, or law, called usually the Law of Least Action; suggested by questionable views, but established on the widest induction, and embracing every known combination of media, and every straight, or bent, or curved line, ordinary or extraordinary, along which light (whatever light may be) extends its influence successively in space and time: namely, that this linear path of light, from one point to another, is always found to be such that, if it be compared with the other infinitely various lines by which in thought and in geometry the same two points might be connected, a certain integral or sum, called often Action, and depending by fixed rules on the length, and shape, and position of the path, and on the media which are traversed by it, is less than all the similar integrals for the other neighbouring lines, or, at least, possesses, with respect to them, a certain stationary property. From this Law, then, which may, perhaps, be named the Law of Stationary Action, it seems that we may most fitly and with best hope set out, in the synthetic or deductive process and in the search of a mathematical method.
“Accordingly, from this known law of least or stationary action I deduced (long since) another connected and coextensive principle, which may be called by analogy the Law of Varying Action, and which seems to offer naturally a method such as we are seeking; the one law being as it were the last step in the ascending scale of induction, respecting linear paths of light, while the other law may usefully be made the first in the descending and deductive way.
“The former of these two laws was discovered in the following manner. The elementary principle of straight rays showed that light, under the most simple and usual circumstances, employs the direct, and therefore the shortest, course to pass from one point to another. Again, it was a very early discovery (attributed by Laplace to Ptolemy), that, in the case of a plane mirror, the bent line formed by the incident and reflected rays is shorter than any other bent line having the same extremities, and having its point of bending on the mirror. These facts were thought by some to be instances and results of the simplicity and economy of nature; and Fermat, whose researches on maxima and minima are claimed by the Continental mathematicians as the germ of the differential calculus, sought anxiously to trace some similar economy in the