more complex case of refraction. He believed that by a metaphysical or cosmological necessity, arising from the simplicity of the universe, light always takes the course which it can traverse in the shortest time. To reconcile this metaphysical opinion with the law of refraction, discovered experimentally by Snellius, Fermat was led to suppose that the two lengths, or indices, which Snellius had measured on the incident ray prolonged and on the refracted ray, and had observed to have one common projection on a refracting plane, are inversely proportional to the two successive velocities of the light before and after refraction, and therefore that the velocity of light is diminished on entering those denser media in which it is observed to approach the perpendicular; for Fermat believed that the time of propagation of light along a line bent by refraction was represented by the sum of the two products, of the incident portion multiplied by the index of the first medium and of the refracted portion multiplied by the index of the second medium; because he found, by his mathematical method, that this sum was less, in the case of a plane refractor, than if light went by any other than its actual path from one given point to another, and because he perceived that the supposition of a velocity inversely as the index reconciled his mathematical discovery of the minimum of the foregoing sum with his cosmological principle of least time. Descartes attacked Fermat’s opinions respecting light, but Leibnitz zealously defended them; and Huygens was led, by reasonings of a very different kind, to adopt Fermat’s conclusions of a velocity inversely as the index, and of a minimum time of propagation of light, in passing from one given point to another through an ordinary refracting plane. Newton, however, by his theory of emission and attraction, was led to conclude that the velocity of light was directly, not inversely, as the index, and that it was increased instead of being diminished on entering a denser medium; a result incompatible with the theorem of the shortest time in refraction. This theorem of shortest time was accordingly abandoned by many, and among the rest by Maupertuis, who, however, proposed in its stead, as a new cosmological principle, that celebrated law of least action which has since acquired so high a rank in mathematical physics, by the improvements of Euler and Lagrange.”
§ 9. The second half of the 17th century witnessed developments in the practice and theory of optics which equal in importance the mathematical, chemical and astronomical acquisitions of the period. Original observations were made which led to the discovery, in an embryonic form, of new properties of light, and the development of mathematical analysis facilitated the quantitative and theoretical investigation of these properties. Indeed, mathematical and physical optics may justly be dated from this time. The phenomenon of diffraction, so named by Grimaldi, and by Newton inflection, which may be described briefly as the spreading out, or deviation, from the strictly rectilinear path of light passing through a small aperture or beyond the edge of an opaque object, was discovered by the Italian Jesuit, Francis Maria Grimaldi (1619–1663), and published in his Physico-Mathesis de Lumine (1665); at about the same time Newton made his classical investigation of the spectrum or the band of colours formed when light is transmitted through a prism,[1] and studied interference phenomena in the form of the colours of thin and thick plates, and in the form now termed Newton’s rings; double refraction, in the form of the dual images of a single object formed by a rhomb of Iceland spar, was discovered by Bartholinus in 1670; Huygens’s examination of the transmitted beams led to the discovery of an absence of symmetry now called polarization; and the finite velocity of light was deduced in 1676 by Ole Roemer from the comparison of the observed and computed times of the eclipses of the moons of Jupiter.
These discoveries had a far-reaching influence upon the theoretical views which had been previously held: for instance, Newton’s recombination of the spectrum by means of a second (inverted) prism caused the rejection of the earlier view that the prism actually manufactured the colours, and led to the acceptance of the theory that the colours were physically present in the white light, the function of the prism being merely to separate the physical mixture; and Roemer’s discovery of the finite velocity of light introduced the necessity of considering the momentum of the particles which, on the accepted emission theory, composed the light. Of greater moment was the controversy concerning the emission or corpuscular theory championed by Newton and the undulatory theory presented by Huygens (see section II. of this article). In order to explain the colours of thin plates Newton was forced to abandon some of the original simplicity of his theory; and we may observe that by postulating certain motions for the Newtonian corpuscles all the phenomena of light can be explained, these motions aggregating to a transverse displacement, translated longitudinally, and the corpuscles, at the same time, becoming otiose and being replaced by a medium in which the vibration is transmitted. In this way the Newtonian theory may be merged into the undulatory theory. Newton’s results are collected in his Opticks, the first edition of which appeared in 1704. Huygens published his theory in his Traité de lumière (1690), where he explained reflection, refraction and double refraction, but did not elucidate the formation of shadows (which was readily explicable on the Newtonian hypothesis) or polarization; and it was this inability to explain polarization which led to Newton’s rejection of the wave theory. The authority of Newton and his masterly exposition of the corpuscular theory sustained that theory until the beginning of the 19th century, when it succumbed to the assiduous skill of Young and Fresnel.
§ 10. Simultaneously with this remarkable development of theoretical and experimental optics, notable progress was made in the construction of optical instruments. The increased demand for telescopes, occasioned by the interest in observational astronomy, led to improvements in the grinding of lenses (the primary aim being to obtain forms in which spherical aberration was a minimum), and also to the study of achromatism, the principles of which followed from Newton’s analysis and synthesis of white light. Kepler’s supposition that lenses having the form of surfaces of revolution of the conic sections would bring rays to a focus without spherical aberration was investigated by Descartes, and the success of the latter’s demonstration led to the grinding of ellipsoidal and hyperboloidal lenses, but with disappointing results.[2] The grinding of spherical lenses was greatly improved by Huygens, who also attempted to reduce chromatic aberration in the refracting telescope by introducing a stop (i.e. by restricting the aperture of the rays); to the same experimenter are due compound eye-pieces, the invention of which had been previously suggested by Eustachio Divini. The so-called Huygenian eye-piece is composed of two plano-convex lenses with their plane faces towards the eye; the field-glass has a focal length three times that of the eye-glass, and the distance between them is twice the focal length of the eye-glass. Huygens observed that spherical aberration was diminished by making the deviations of the rays at the two lenses equal, and Ruggiero Giuseppe Boscovich subsequently pointed out that the combination was achromatic. The true development, however, of the achromatic refracting telescope, which followed from the introduction of compound object-glasses giving no dispersion, dates from about the middle of the 18th century.
- ↑ Newton’s observation that a second refraction did not change the colours had been anticipated in 1648 by Marci de Kronland (1595–1667), professor of medicine at the university of Prague, in his Thaumantias, who studied the spectrum under the name of Iris trigonia. There is no evidence that Newton knew of this, although he mentions de Dominic’s experiment with the glass globe containing water.
- ↑ The geometrical determination of the form of the surface which will reflect, or of the surface dividing two media which will refract, rays from one point to another, is very easily effected by using the “characteristic function” of Hamilton, which for the problems under consideration may be stated in the form that “the optical paths of all rays must be the same.” In the case of reflection, if A and B be the diverging and converging points, and P a point on the reflecting surface, then the locus of P is such that AP + PB is constant. Therefore the surface is an ellipsoid of revolution having A and B as foci. If the rays be parallel, i.e. if A be at infinity, the surface is a paraboloid of revolution having B as focus and the axis parallel to the direction of the rays. In refraction if A be in the medium of index µ, and B in the medium of index µ′, the characteristic function shows that µAP + µ′PB, where P is a point on the surface, must be constant. Plane sections through A and B of such surfaces were originally investigated by Descartes, and are named Cartesian ovals. If the rays be parallel, i.e. A be at infinity, the surface becomes an ellipsoid of revolution having B for one focus, µ′/µ for eccentricity, and the axis parallel to the direction of the rays.