Page:EB1911 - Volume 16.djvu/634

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
614  
LIGHT
[HISTORY


The difficulty of obtaining lens systems in which aberrations were minimized, and the theory of Newton that colour production invariably attended refraction, led to the manufacture of improved specula which permitted the introduction of reflecting telescopes. The idea of this type of instrument had apparently occurred to Marin Mersenne in about 1640, but the first reflector of note was described in 1663 by James Gregory in his Optica promota; a second type was invented by Newton, and a third in 1672 by Cassegrain. Slight improvements were made in the microscope, although the achromatic type did not appear until about 1820, some sixty years after John Dollond had determined the principle of the achromatic telescope (see Aberration, Telescope, Microscope, Binocular Instrument).

§ 11. Passing over the discovery by Ehrenfried Walther Tschirnhausen (1651–1708) of the caustics produced by reflection (“catacaustics”) and his experiments with large reflectors and refractors (for the manufacture of which he established glass-works in Italy); James Bradley’s discovery in 1728 of the “aberration of light,” with the subsequent derivation of the velocity of light, the value agreeing fairly well with Roemer’s estimate; the foundation of scientific photometry by Pierre Bouguer in an essay published in 1729 and expanded in 1760 into his Traité d’optique sur la graduation de la lumière; the publication of John Henry Lambert’s treatise on the same subject, entitled Photometria, sive de Mensura et Gradibus Luminis, Colorum et Umbrae (1760); and the development of the telescope and other optical instruments, we arrive at the closing decades of the 18th century. During the forty years 1780 to 1820 the history of optics is especially marked by the names of Thomas Young and Augustin Fresnel, and in a lesser degree by Arago, Malus, Sir William Herschel, Fraunhofer, Wollaston, Biot and Brewster.

Although the corpuscular theory had been disputed by Benjamin Franklin, Leonhard Euler and others, the authority of Newton retained for it an almost general acceptance until the beginning of the 19th century, when Young and Fresnel instituted their destructive criticism. Basing his views on the earlier undulatory theories and diffraction phenomena of Grimaldi and Hooke, Young accepted the Huygenian theory, assuming, from a false analogy with sound waves, that the wave-disturbance was longitudinal, and ignoring the suggestion made by Hooke in 1672 that the direction of the vibration might be transverse, i.e. at right angles to the direction of the rays. As with Huygens, Young was unable to explain diffraction correctly, or polarization. But the assumption enabled him to establish the principle of interference,[1] one of the most fertile in the science of physical optics. The undulatory theory was also accepted by Fresnel who, perceiving the inadequacy of the researches of Huygens and Young, showed in 1818 by an analysis which, however, is not quite free from objection, that, by assuming that every element of a wave-surface could act as a source of secondary waves or wavelets, the diffraction bands were due to the interference of the secondary waves formed by each element of a primary wave falling upon the edge of an obstacle or aperture. One consequence of Fresnel’s theory was that the bands were independent of the nature of the diffracting edge—a fact confirmed by experiment and therefore invalidating Young’s theory that the bands were produced by the interference between the primary wave and the wave reflected from the edge of the obstacle. Another consequence, which was first mathematically deduced by Poisson and subsequently confirmed by experiment, is the paradoxical phenomenon that a small circular disk illuminated by a point source casts a shadow having a bright centre.

§ 12. The undulatory theory reached its zenith when Fresnel explained the complex phenomena of polarization, by adopting the conception of Hooke that the vibrations were transverse, and not longitudinal.[2] Polarization by double refraction had been investigated by Huygens, and the researches of Wollaston and, more especially, of Young, gave such an impetus to the study that the Institute of France made double refraction the subject of a prize essay in 1812. E. L. Malus (1775–1812) discovered the phenomenon of polarization by reflection about 1808 and investigated metallic reflection; Arago discovered circular polarization in quartz in 1811, and, with Fresnel, made many experimental investigations, which aided the establishment of the Fresnel-Arago laws of the interference of polarized beams; Biot introduced a reflecting polariscope, investigated the colours of crystalline plates and made many careful researches on the rotation of the plane of polarization; Sir David Brewster made investigations over a wide range, and formulated the law connecting the angle of polarization with the refractive index of the reflecting medium. Fresnel’s theory was developed in a strikingly original manner by Sir William Rowan Hamilton, who interpreted from Fresnel’s analytical determination of the geometrical form of the wave-surface in biaxal crystals the existence of two hitherto unrecorded phenomena. At Hamilton’s instigation Humphrey Lloyd undertook the experimental search, and brought to light the phenomena of external and internal conical refraction.

The undulatory vibration postulated by Fresnel having been generally accepted as explaining most optical phenomena, it became necessary to determine the mechanical properties of the aether which transmits this motion. Fresnel, Neumann, Cauchy, MacCullagh, and, especially, Green and Stokes, developed the “elastic-solid theory.” By applying the theory of elasticity they endeavoured to determine the constants of a medium which could transmit waves of the nature of light. Many different allocations were suggested (of which one of the most recent is Lord Kelvin’s “contractile aether,” which, however, was afterwards discarded by its author), and the theory as left by Green and Stokes has merits other than purely historical. At a later date theories involving an action between the aether and material atoms were proposed, the first of any moment being J. Boussinesq’s (1867). C. Christiansen’s investigation of anomalous dispersion in 1870, and the failure of Cauchy’s formula (founded on the elastic-solid theory) to explain this phenomenon, led to the theories of W. Sellmeier (1872), H. von Helmholtz (1875), E. Ketteler (1878), E. Lommel (1878) and W. Voigt (1883). A third class of theory, to which the present-day theory belongs, followed from Clerk Maxwell’s analytical investigations in electromagnetics. Of the greatest exponents of this theory we may mention H. A. Lorentz, P. Drude and J. Larmor, while Lord Rayleigh has, with conspicuous brilliancy, explained several phenomena (e.g. the colour of the sky) on this hypothesis.

For a critical examination of these theories see section II. of this article; reference may also be made to the British Association Reports: “On Physical Optics,” by Humphrey Lloyd (1834), p. 35; “On Double Refraction,” by Sir G. G. Stokes (1862), p. 253; “On Optical Theories,” by R. T. Glazebrook (1885), p. 157.

§ 13. Recent Developments.—The determination of the velocity of light (see section III. of this article) may be regarded as definitely settled, a result contributed to by A. H. L. Fizeau (1849), J. B. L. Foucault (1850, 1862), A. Cornu (1874), A. A. Michelson (1880), James Young and George Forbes (1882), Simon Newcomb (1880–1882) and Cornu (1900). The velocity in moving media was investigated theoretically by Fresnel; and Fizeau (1859), and Michelson and Morley (1886) showed experimentally that the velocity was increased in running water by an amount agreeing with Fresnel’s formula, which was based on the hypothesis of a stationary aether. The optics of moving media have also been investigated by Lord Rayleigh, and more especially by H. A. Lorentz, who also assumed a stationary aether. The relative motion of the earth and the aether has an

  1. Young’s views of the nature of light, which he formulated as Propositions and Hypotheses, are given in extenso in the article Interference. See also his article “Chromatics” in the supplementary volumes to the 3rd edition of the Encyclopaedia Britannica.
  2. A crucial test of the emission and undulatory theories, which was realized by Descartes, Newton, Fermat and others, consisted in determining the velocity of light in two differently refracting media. This experiment was conducted in 1850 by Foucault, who showed that the velocity was less in water than in air, thereby confirming the undulatory and invalidating the emission theory.