Page:EB1911 - Volume 20.djvu/645

From Wikisource
Jump to navigation Jump to search
This page has been validated.
  
PALAEONTOLOGY
589

contributed most brilliant discussions of the theory of alternations of habitat as applied to the interpretation of the anatomy of the marsupials, of many kinds of fishes, of such reptiles as the herbivorous dinosaurs of the Upper Cretaceous. He has applied the theory with especial ingenuity to the interpretation of the circular bony plates in the carapace of the aberrant leather-back sea-turtles (Sphargidae) by prefacing an initial land phase, in which the typical armature of land tortoises was acquired, a first marine or pelagic phase, in which this armature was lost, a third littoral or seashore phase, in which a new polygonal armature was acquired, and a fourth resumed or secondary marine phase, in which this polygonal armature began to degenerate.

Each of these alternate life phases may leave some profound modification, which is partially obscured but seldom wholly lost; thus the tracing of the evidences of former adaptations is of great importance in phylogenetic study.

A very important evolutionary principle is that in such secondary returns to primary phases lost organs are never recovered, but new organs are acquired; hence the force of Dollo’s dictum that evolution is irreversible from the point of view of structure, while frequently reversible, or recurrent, in point of view of the conditions of environment and adaptation.

3. Adaptive Radiations of Groups, Continental and Local.—Starting with the stem forms the descendants of which have passed through either persistent or changed habitats, we reach the underlying idea of the branching law of Lamarck or the law of divergence of Darwin, and find it perhaps most clearly expressed in the words “adaptive radiation” (Osborn), which convey the idea of radii in many directions. Among extinct Tertiary mammals we can actually trace the giving off of these radii in all directions, for taking advantage of every possibility to secure food, to escape enemies and to reproduce kind; further, among such well-known quadrupeds as the horses, rhinoceroses and titanotheres, the modifications involved in these radiations can be clearly traced. Thus the history of continental life presents a picture of contemporaneous radiations in different parts of the world and of a succession of radiations in the same parts. We observe the contemporaneous and largely independent radiations of the hoofed animals in South America, in Africa and in the great ancient continent comprising Europe, Asia and North America; we observe the Cretaceous radiation of hoofed animals in the northern hemisphere, followed by a second radiation of hoofed animals in the same region, in some cases one surviving spur of an old radiation becoming the centre of a new one. As a rule, the larger the geographic theatre the grander the radiation. Successive discoveries have revealed certain grand centres, such as (1) the marsupial radiation of Australia, (2) the little-known Cretaceous radiation of placental mammals in the northern hemisphere, which was probably connected in part with the peopling of South America, (3) the Tertiary placental radiation in the northern hemisphere, partly connected with Africa, (4) the main Tertiary radiation in South America. Each of these radiations produced a greater or less number of analogous groups, and while originally independent the animals thus evolving as autochthonous types finally mingled together as migrant or invading types. We are thus working out gradually the separate contributions of the land masses of North America, South America, Europe, Asia, Africa, and of Australia to the mammalian fauna of the world, a result which can be obtained through palaeontology only.

4. Adaptive Local Radiation.—On a smaller scale are the local adaptive radiations which occur through segregation of habit and local isolation in the same general geographic region wherever physiographic and climatic differences are sufficient to produce local differences in food supply or other local factors of change. This local divergence may proceed as rapidly as through wide geographical segregation or isolation. This principle has been demonstrated recently among Tertiary rhinoceroses and titanotheres, in which remains of four or five genetic series in the same geologic deposits have been discovered. We have proof that in the Upper Miocene of Colorado there existed a forest-living horse, or more persistent primitive type, which was contemporaneous with and is found in the same deposits with the plains-living horse (Neohipparion) of the most advanced or specialized desert type (see Plate IV., figs. 12, 13, 14, 15). In times of drought these animals undoubtedly resorted to the same water-courses for drink, and thus their fossilized remains are found associated.

5. The Law of Polyphyletic Evolution. The Sequence of Phyla or Genetic Series.—There results from continental and local adaptive radiations the presence in the same geographical region of numerous distinct lines in a given group of animals. The polyphyletic law was early demonstrated among invertebrates by Neumayr (1889) when he showed that the ammonite genus Phylloceras follows not one but five distinct lines of evolution of unequal duration. The brachiopods, generally classed collectively as Spirifer mucronatus, follow at least five distinct lines of evolution in the Middle Devonian of North America, while more than twenty divergent lines have been observed by Grabau among the species of the gastropod genus Fusus in Tertiary and recent times. Vertebrate palaeontologists were slow to grasp this principle; while the early speculative phylogenies of the horse of Huxley and Marsh, for example, were mostly displayed monophyletically, or in single lines of descent, it is now recognized that the horses which were placed by Marsh in a single series are really to be ranged in a great number of contemporaneous but separate series, each but partially known, and that the direct phylum which leads to the modern horse has become a matter of far more difficult search. As early as 1862 Gaudry set forth this very polyphyletic principle in his tabular phylogenies, but failed to carry it to its logical application. It is now applied throughout the Vertebrata of both Mesozoic and Cenozoic times. Among marine Mesozoic reptiles, each of the groups broadly known as ichthyosaurs, plesiosaurs, mosasaurs and crocodiles were polyphyletic in a marked degree. Among land animals striking illustrations of this local polyphyletic law are found in the existence of seven or eight contemporary series of rhinoceroses, five or six contemporary series of horses, and an equally numerous contemporary series of American Miocene and Pliocene camels; in short, the polyphyletic condition is the rule rather than the exception. It is displayed to-day among the antelopes and to a limited degree among the zebras and rhinoceroses of Africa, a continent which exhibits a survival of the Miocene and Pliocene conditions of the northern hemisphere.

6. Development of Analogous Progressive and Retrogressive Groups.—Because of the repetition of analogous physiographic and climatic conditions in regions widely separated both in time and in space, we discover that continental and local adaptive radiations result in the creation of analogous groups of radii among all the vertebrates and invertebrates. Illustrations of this law were set forth by Cope as early as 1861 (see “Origin of Genera,” reprinted in the Origin of the Fittest, pp. 95-106) in pointing out the extraordinary parallelisms between unrelated groups of amphibians, reptiles and mammals. In the Jurassic period there were no less than six orders of reptiles which independently abandoned terrestrial life and acquired more or less perfect adaptation to sea life. Nature, limited in her resources for adaptation, fashioned so many of these animals in like form that we have learned only recently to distinguish similarities of analogous habit from the similitudes of real kinship. From whatever order of Mammalia or Reptilia an animal may be derived, prolonged aquatic adaptation will model its outer, and finally its inner, structure according to certain advantageous designs. The requirements of an elongate body moving through the resistant medium of water are met by the evolution of similar entrant and exit curves, and the bodies of most swiftly moving aquatic animals evolve into forms resembling the hulls of modern sailing yachts (Bashford Dean). We owe especially to Willy Kükenthal, Eberhard Fraas, S. W. Williston and R. C. Osburn a summary of those modifications of form to which aquatic life invariably leads.

The law of analogy also operates in retrogression. A. Smith Woodward has observed that the decline of many groups of