fishes is heralded by the tendency to assume elongate and finally eel-shaped forms, as seen independently, for example, among the declining Acanthodians or palaeozoic sharks, among the modern crossopterygian Polypterus and Calamoichthys of the Nile, in the modern dipneustan Lepidosiren and Protopterus, in the Triassic chondrostean Belonorhynchus, as well as in the bow-fin (Amia) and the garpike (Lepidosteus).
Among invertebrates similar analogous groups also develop. This is especially marked in retrogressive, though also well-known in progressive series. The loss of the power to coil, observed in the terminals of many declining series of gastropods from the Cambrian to the present time, and the similar loss of power among Natiloidea and Ammonoidea of many genetic series, as well as the ostraean form assumed by various declining series of pelecypods and by some brachiopods, may be cited as examples.
7. Periods of Gradual Evolution of Groups.—It is certainly a very striking fact that wherever we have been able to trace genetic series, either of invertebrates or vertebrates, in closely sequent geological horizons, or life zones, we find strong proof of evolution through extremely gradual mutation simultaneously affecting many parts of each organism, as set forth above. This proof has been reached quite independently by a very large number of observers studying a still greater variety of animals. Such diverse organisms as brachiopods, ammonites, horses and rhinoceroses absolutely conform to this law in all those rare localities where we have been able to observe closely sequent stages. The inference is almost irresistible that the law of gradual transformation through minute continuous change is by far the most universal; but many palaeontologists as well as zoologists and botanists hold a contrary opinion.
8. Periods of Rapid Evolution of Groups.—The above law of gradual evolution is perfectly consistent with a second principle, namely, that at certain times evolution is much more rapid than at others, and that organisms are accelerated or retarded in development in a manner broadly analogous to the acceleration or retardation of separate organs. Thus H. S. Williams observes (Geological Biology, p. 268) that the evolution of those fundamental characters which mark differences between separate classes, orders, sub-orders, and even families of organisms, took place in relatively short periods of time. Among the brachiopods the chief expansion of each type is at a relatively early period in their life-history. Hyatt (1883) observed of the ammonites that each group originated suddenly and spread out with great rapidity. Depéret notes that the genus Neumayria, an ammonite of the Kimmeridgian, suddenly branches out into an explosion of forms. Depéret also observes the contrast between periods of quiescence and limited variability and periods of sudden efflorescence. A. Smith Woodward (“Relations of Palaeontology to Biology,” Annals and Mag. Natural Hist., 1906, p. 317) notes that the fundamental advances in the growth of fish life have always been sudden, beginning with excessive vigour at the end of long periods of apparent stagnation; while each advance has been marked by the fixed and definite acquisition of some new anatomical character or “expression point,” a term first used by Cope. One of the causes of these sudden advances is undoubtedly to be found in the acquisition of a new and extremely useful character. Thus the perfect jaw and the perfect pair of lateral fins when first acquired among the fishes favoured a very rapid and for a time unchecked development. It by no means follows, however, from this incontrovertible evidence that the acquisition either of the jaw or of the lateral fins had not been in itself an extremely gradual process.
Thus both invertebrate and vertebrate palaeontologists have reached independently the conclusion that the evolution of groups is not continuously at a uniform rate, but that there are, especially in the beginnings of new phyla or at the time of acquisition of new organs, sudden variations in the rate of evolution which have been termed variously “rhythmic,” “pulsating,” “efflorescent,” “intermittent” and even “explosive” (Depéret).
This varying rate of evolution has (illogically, we believe) been compared with and advanced in support of the “mutation law of De Vries,” or the theory of saltatory evolution, which we may next consider.
9. Hypothesis of the Sudden Appearance of New Parts or Organs.—The rarity of really continuous series has naturally led palaeontologists to support the hypothesis of brusque transitions of structure. As we have seen, this hypothesis was fathered by Geoffroy St Hilaire in 1830 from his studies of Mesozoic Crocodilia, was sustained by Haldemann, and quite recently has been revived by such eminent palaeontologists as Louis Dollo and A. Smith Woodward. The evidence for it is not to be confused with that for the law of rapid efflorescence of groups just considered. It should be remembered that palaeontology is the most unfavourable field of all for observation and demonstration of sudden saltations or mutations of character, because of the limited materials available for comparison and the rarity of genetic series. It should be borne in mind, first, that wherever a new animal suddenly appears or a new character suddenly arises in a fossil horizon we must consider whether such appearance may be due to the non-discovery of transitional links with older forms, or to the sudden invasion of a new type or new organ which has gradually evolved elsewhere. The rapid variation of certain groups of animals or the acceleration of certain organs is also not evidence of the sudden appearance of new adaptive characters. Such sudden appearances may be demonstrated possibly in zoology and embryology but never can be demonstrated by palaeontology, because of the incompleteness of the geological record.
10. Decline or Senescence of Groups.—Periods of gradual evolution and of efflorescence may be followed by stationary or senescent conditions. In his history of the Arietidae Hyatt points out that toward the close of the Cretaceous this entire group of ammonites appears to have been affected with some malady; the unrolled forms multiply, the septa are simplified, the ornamentation becomes heavy, thick, and finally disappears in the adult; the entire group ends by dying out and leaving no descendants. This is not due to environmental conditions solely, because senescent branches of normal progressive groups are found in all geologic horizons, beginning, for gastropods, in the Lower Cambrian. Among the ammonites the loss of power to coil the shell is one feature of racial old age, and in others old age is accompanied by closer coiling and loss of surface ornamentation, such as spines, ribs, spirals; while in other forms an arresting of variability precedes extinction. Thus Williams has observed that if we find a species breeding perfectly true we can conceive it to have reached the end of its racial life period. Brocchi and Daniel Rosa (1899) have developed the hypothesis of the progressive reduction of variability. Such decline is by no means a universal law of life, however, because among many of the continental vertebrates at least we observe extinctions repeatedly occurring during the expression of maximum variability. Whereas among many ammonites and gastropods smoothness of the shell, following upon an ornamental youthful condition, is generally a symptom of decline, among many other invertebrates and vertebrates, as C. E. Beecher (1856–1905) has pointed out (1898), many animals possessing hard parts tend toward the close of their racial history to produce a superfluity of dead matter, which accumulates in the form of spines among invertebrates, and of horns among the land vertebrates, reaching a maximum when the animals are really on the down-grade of development.
11. The Extinction of Groups.—We have seen that different lines vary in vitality and in longevity, that from the earliest times senescent branches are given off, that different lines vary in the rate of evolution, that extinction is often heralded by symptoms of racial old age, which, however, vary widely in different groups. In general we find an analogy between the development of groups and of organs; we discover that each phyletic branch of certain organisms traverses a geologic career comparable to the life of an individual, that we may often distinguish, especially among invertebrates, a phase of youth, a phase of maturity, a phase of senility or degeneration foreshadowing the extinction of a type.