CONTENTS
xv
SECTION PAGE 212. Volumes of solids of revolution................................................................................................................................................................................................................................................................................................................................................................................................377 213. Areas of surfaces of revolution................................................................................................................................................................................................................................................................................................................................................................................................381 214. Miscellaneous applications................................................................................................................................................................................................................................................................................................................................................................................................385 CHAPTER XXIX
SUCCESSIVE AND PARTIAL INTEGRATION215. Successive integration................................................................................................................................................................................................................................................................................................................................................................................................393 216. Partial integration................................................................................................................................................................................................................................................................................................................................................................................................395 217. Definite double integral. Geometric interpretation................................................................................................................................................................................................................................................................................................................................................................................................396 218. Value of a definite double integral over a region................................................................................................................................................................................................................................................................................................................................................................................................400 219. Plane area as a definite double integral. Rectangular coördinates................................................................................................................................................................................................................................................................................................................................................................................................402 220. Plane area as a definite double integral. Polar coördinates................................................................................................................................................................................................................................................................................................................................................................................................406 221. Moment of area................................................................................................................................................................................................................................................................................................................................................................................................408 222. Center of area................................................................................................................................................................................................................................................................................................................................................................................................408 223. Moment of inertia. Plane areas................................................................................................................................................................................................................................................................................................................................................................................................410 224. Polar moment of inertia. Rectangular coördinates................................................................................................................................................................................................................................................................................................................................................................................................410 225. Polar moment of inertia. Polar coördinates................................................................................................................................................................................................................................................................................................................................................................................................411 226. General method for finding the areas of surfaces................................................................................................................................................................................................................................................................................................................................................................................................413 227. Volumes found by triple integration................................................................................................................................................................................................................................................................................................................................................................................................417 CHAPTER XXX
ORDINARY DIFFERENTIAL EQUATIONS228. Differential equations. Order and degree................................................................................................................................................................................................................................................................................................................................................................................................421 229. Solutions of differential equations................................................................................................................................................................................................................................................................................................................................................................................................422 230. Verifications of solutions................................................................................................................................................................................................................................................................................................................................................................................................423 231. Differential equations of the first order and of the first degree................................................................................................................................................................................................................................................................................................................................................................................................424 232. Differential equations of the order and of the first degree................................................................................................................................................................................................................................................................................................................................................................................................432 CHAPTER XXXI
INTEGRAPH. APPROXIMATE INTEGRATION. TABLE OF INTEGRALS233. Mechanical integration................................................................................................................................................................................................................................................................................................................................................................................................443 234. Integral curves................................................................................................................................................................................................................................................................................................................................................................................................443 235. The integraph................................................................................................................................................................................................................................................................................................................................................................................................445 236. Polar planimeter................................................................................................................................................................................................................................................................................................................................................................................................446 237. Area swept over by a line................................................................................................................................................................................................................................................................................................................................................................................................446 238. Approximate integration................................................................................................................................................................................................................................................................................................................................................................................................448 239. Trapezoidal rule................................................................................................................................................................................................................................................................................................................................................................................................448 240. Simpson's rule (parabolic rule)................................................................................................................................................................................................................................................................................................................................................................................................449 241. Integrals for reference................................................................................................................................................................................................................................................................................................................................................................................................451 - ................................................................................................................................................................................................................................................................................................................................................................................................
461