xiv
CONTENTS
CHAPTER XXV
INTEGRATION OF RATIONAL FRACTIONSSECTION PAGE 184. Introduction................................................................................................................................................................................................................................................................................................................................................................................................325 185. Case I................................................................................................................................................................................................................................................................................................................................................................................................325 186. Case II................................................................................................................................................................................................................................................................................................................................................................................................327 187. Case III................................................................................................................................................................................................................................................................................................................................................................................................329 188. Case IV................................................................................................................................................................................................................................................................................................................................................................................................331 CHAPTER XXVI
INTEGRATION BY SUBSTITUTION OF A NEW VARIABLE. RATIONALIZATION189. Introduction................................................................................................................................................................................................................................................................................................................................................................................................335 190. Differentials containing fractional powers of only................................................................................................................................................................................................................................................................................................................................................................................................335 191. Differentials containing fractional powers of only................................................................................................................................................................................................................................................................................................................................................................................................336 192. Change in limits corresponding to change in variable................................................................................................................................................................................................................................................................................................................................................................................................336 193. Differentials containing no radical except................................................................................................................................................................................................................................................................................................................................................................................................338 194. Differentials containing no radical except................................................................................................................................................................................................................................................................................................................................................................................................338 195. Binomial differentials................................................................................................................................................................................................................................................................................................................................................................................................340 196. Conditions of integrability of binomial differentials................................................................................................................................................................................................................................................................................................................................................................................................341 197. Transformation of trigonometric differentials................................................................................................................................................................................................................................................................................................................................................................................................343 198. Miscellaneous substitutions................................................................................................................................................................................................................................................................................................................................................................................................345 CHAPTER XXVII
INTEGRATION BY PARTS. REDUCTION FORMULAS199. Formula for integration by parts................................................................................................................................................................................................................................................................................................................................................................................................347 200. Reduction formulas for binomial differentials................................................................................................................................................................................................................................................................................................................................................................................................350 201. Reduction formulas for trigonometric differentials................................................................................................................................................................................................................................................................................................................................................................................................356 202. To find and................................................................................................................................................................................................................................................................................................................................................................................................359 CHAPTER XXVIII
INTEGRATION A PROCESS OF SUMMATION203. Introduction................................................................................................................................................................................................................................................................................................................................................................................................361 204. The fundamental theorem of Integral Calculus................................................................................................................................................................................................................................................................................................................................................................................................361 205. Analytical proof of the Fundamental Theorem................................................................................................................................................................................................................................................................................................................................................................................................364 206. Areas of plane curves. Rectangular coördinates................................................................................................................................................................................................................................................................................................................................................................................................365 207. Area when curve is given in parametric form................................................................................................................................................................................................................................................................................................................................................................................................368 208. Areas of plane curves. Polar coördinates................................................................................................................................................................................................................................................................................................................................................................................................370 209. Length of a curve................................................................................................................................................................................................................................................................................................................................................................................................372 210. Lengths of plane curves. Rectangular coördinates................................................................................................................................................................................................................................................................................................................................................................................................373 211. Lengths of plane curves. Polar coördinates................................................................................................................................................................................................................................................................................................................................................................................................375