Page:Elements of the Differential and Integral Calculus - Granville - Revised.djvu/20

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
xiv
CONTENTS
  1. CHAPTER XXV
    INTEGRATION OF RATIONAL FRACTIONS

  2. SECTIONPAGE
  3. 184.
    Introduction
    ................................................................................................................................................................................................................................................................................................................................................................................................
    325
  4. 185.
    Case I
    ................................................................................................................................................................................................................................................................................................................................................................................................
    325
  5. 186.
    Case II
    ................................................................................................................................................................................................................................................................................................................................................................................................
    327
  6. 187.
    Case III
    ................................................................................................................................................................................................................................................................................................................................................................................................
    329
  7. 188.
    Case IV
    ................................................................................................................................................................................................................................................................................................................................................................................................
    331
  8. CHAPTER XXVI
    INTEGRATION BY SUBSTITUTION OF A NEW VARIABLE. RATIONALIZATION

  9. 189.
    Introduction
    ................................................................................................................................................................................................................................................................................................................................................................................................
    335
  10. 190.
    Differentials containing fractional powers of only
    ................................................................................................................................................................................................................................................................................................................................................................................................
    335
  11. 191.
    Differentials containing fractional powers of only
    ................................................................................................................................................................................................................................................................................................................................................................................................
    336
  12. 192.
    Change in limits corresponding to change in variable
    ................................................................................................................................................................................................................................................................................................................................................................................................
    336
  13. 193.
    Differentials containing no radical except
    ................................................................................................................................................................................................................................................................................................................................................................................................
    338
  14. 194.
    Differentials containing no radical except
    ................................................................................................................................................................................................................................................................................................................................................................................................
    338
  15. 195.
    Binomial differentials
    ................................................................................................................................................................................................................................................................................................................................................................................................
    340
  16. 196.
    Conditions of integrability of binomial differentials
    ................................................................................................................................................................................................................................................................................................................................................................................................
    341
  17. 197.
    Transformation of trigonometric differentials
    ................................................................................................................................................................................................................................................................................................................................................................................................
    343
  18. 198.
    Miscellaneous substitutions
    ................................................................................................................................................................................................................................................................................................................................................................................................
    345
  19. CHAPTER XXVII
    INTEGRATION BY PARTS. REDUCTION FORMULAS

  20. 199.
    Formula for integration by parts
    ................................................................................................................................................................................................................................................................................................................................................................................................
    347
  21. 200.
    Reduction formulas for binomial differentials
    ................................................................................................................................................................................................................................................................................................................................................................................................
    350
  22. 201.
    Reduction formulas for trigonometric differentials
    ................................................................................................................................................................................................................................................................................................................................................................................................
    356
  23. 202.
    To find and
    ................................................................................................................................................................................................................................................................................................................................................................................................
    359
  24. CHAPTER XXVIII
    INTEGRATION A PROCESS OF SUMMATION

  25. 203.
    Introduction
    ................................................................................................................................................................................................................................................................................................................................................................................................
    361
  26. 204.
    The fundamental theorem of Integral Calculus
    ................................................................................................................................................................................................................................................................................................................................................................................................
    361
  27. 205.
    Analytical proof of the Fundamental Theorem
    ................................................................................................................................................................................................................................................................................................................................................................................................
    364
  28. 206.
    Areas of plane curves. Rectangular coördinates
    ................................................................................................................................................................................................................................................................................................................................................................................................
    365
  29. 207.
    Area when curve is given in parametric form
    ................................................................................................................................................................................................................................................................................................................................................................................................
    368
  30. 208.
    Areas of plane curves. Polar coördinates
    ................................................................................................................................................................................................................................................................................................................................................................................................
    370
  31. 209.
    Length of a curve
    ................................................................................................................................................................................................................................................................................................................................................................................................
    372
  32. 210.
    Lengths of plane curves. Rectangular coördinates
    ................................................................................................................................................................................................................................................................................................................................................................................................
    373
  33. 211.
    Lengths of plane curves. Polar coördinates
    ................................................................................................................................................................................................................................................................................................................................................................................................
    375