Jump to content

Page:Elements of the Differential and Integral Calculus - Granville - Revised.djvu/20

From Wikisource
This page has been proofread, but needs to be validated.
xiv
CONTENTS
  1. CHAPTER XXV
    INTEGRATION OF RATIONAL FRACTIONS

  2. SECTIONPAGE
  3. 184.
    Introduction
    ................................................................................................................................................................................................................................................................................................................................................................................................
    325
  4. 185.
    Case I
    ................................................................................................................................................................................................................................................................................................................................................................................................
    325
  5. 186.
    Case II
    ................................................................................................................................................................................................................................................................................................................................................................................................
    327
  6. 187.
    Case III
    ................................................................................................................................................................................................................................................................................................................................................................................................
    329
  7. 188.
    Case IV
    ................................................................................................................................................................................................................................................................................................................................................................................................
    331
  8. CHAPTER XXVI
    INTEGRATION BY SUBSTITUTION OF A NEW VARIABLE. RATIONALIZATION

  9. 189.
    Introduction
    ................................................................................................................................................................................................................................................................................................................................................................................................
    335
  10. 190.
    Differentials containing fractional powers of only
    ................................................................................................................................................................................................................................................................................................................................................................................................
    335
  11. 191.
    Differentials containing fractional powers of only
    ................................................................................................................................................................................................................................................................................................................................................................................................
    336
  12. 192.
    Change in limits corresponding to change in variable
    ................................................................................................................................................................................................................................................................................................................................................................................................
    336
  13. 193.
    Differentials containing no radical except
    ................................................................................................................................................................................................................................................................................................................................................................................................
    338
  14. 194.
    Differentials containing no radical except
    ................................................................................................................................................................................................................................................................................................................................................................................................
    338
  15. 195.
    Binomial differentials
    ................................................................................................................................................................................................................................................................................................................................................................................................
    340
  16. 196.
    Conditions of integrability of binomial differentials
    ................................................................................................................................................................................................................................................................................................................................................................................................
    341
  17. 197.
    Transformation of trigonometric differentials
    ................................................................................................................................................................................................................................................................................................................................................................................................
    343
  18. 198.
    Miscellaneous substitutions
    ................................................................................................................................................................................................................................................................................................................................................................................................
    345
  19. CHAPTER XXVII
    INTEGRATION BY PARTS. REDUCTION FORMULAS

  20. 199.
    Formula for integration by parts
    ................................................................................................................................................................................................................................................................................................................................................................................................
    347
  21. 200.
    Reduction formulas for binomial differentials
    ................................................................................................................................................................................................................................................................................................................................................................................................
    350
  22. 201.
    Reduction formulas for trigonometric differentials
    ................................................................................................................................................................................................................................................................................................................................................................................................
    356
  23. 202.
    To find and
    ................................................................................................................................................................................................................................................................................................................................................................................................
    359
  24. CHAPTER XXVIII
    INTEGRATION A PROCESS OF SUMMATION

  25. 203.
    Introduction
    ................................................................................................................................................................................................................................................................................................................................................................................................
    361
  26. 204.
    The fundamental theorem of Integral Calculus
    ................................................................................................................................................................................................................................................................................................................................................................................................
    361
  27. 205.
    Analytical proof of the Fundamental Theorem
    ................................................................................................................................................................................................................................................................................................................................................................................................
    364
  28. 206.
    Areas of plane curves. Rectangular coördinates
    ................................................................................................................................................................................................................................................................................................................................................................................................
    365
  29. 207.
    Area when curve is given in parametric form
    ................................................................................................................................................................................................................................................................................................................................................................................................
    368
  30. 208.
    Areas of plane curves. Polar coördinates
    ................................................................................................................................................................................................................................................................................................................................................................................................
    370
  31. 209.
    Length of a curve
    ................................................................................................................................................................................................................................................................................................................................................................................................
    372
  32. 210.
    Lengths of plane curves. Rectangular coördinates
    ................................................................................................................................................................................................................................................................................................................................................................................................
    373
  33. 211.
    Lengths of plane curves. Polar coördinates
    ................................................................................................................................................................................................................................................................................................................................................................................................
    375