In each case
y
{\displaystyle \scriptstyle {y}}
(the value of the function) is known, or, as we say, defined , for all values of
x
{\displaystyle \scriptstyle {x}}
. This is not by any means true of all functions, as the following examples illustrating the more common exceptions will show.
(1)
y
=
a
x
−
b
{\displaystyle \scriptstyle {y={\frac {a}{x-b}}}}
.
Here the value of
y
{\displaystyle \scriptstyle {y}}
(i.e. the function) is defined for all values of
x
{\displaystyle \scriptstyle {x}}
except
x
=
b
{\displaystyle \scriptstyle {x=b}}
. When
x
=
b
{\displaystyle \scriptstyle {x=b}}
the divisor becomes zero and the value of
y
{\displaystyle \scriptstyle {y}}
cannot be computed from (1).[ 1] Any value might be assigned to the function for this value of the argument.
(2)
y
=
x
{\displaystyle \scriptstyle {y={\sqrt {x}}}}
.
In this case the function is defined only for positive values of
x
{\displaystyle \scriptstyle {x}}
. Negative values of
x
{\displaystyle \scriptstyle {x}}
give imaginary values for
y
{\displaystyle \scriptstyle {y}}
, and these must be excluded here, where we are confining ourselves to real numbers only.
(3)
y
=
log
a
x
.
a
>
0
{\displaystyle \scriptstyle {y=\log _{a}x.\qquad \qquad \qquad a>0}}
Here
y
{\displaystyle \scriptstyle {y}}
is defined only for positive values of
x
{\displaystyle \scriptstyle {x}}
. For negative values of
x
{\displaystyle \scriptstyle {x}}
this function does not exist (see § 19 ).
(4)
y
=
a
r
c
s
i
n
x
,
y
=
a
r
c
c
o
s
x
{\displaystyle \scriptstyle {y=\operatorname {arc~sin} x,y=\operatorname {arc~cos} x}}
.
Since sines and cosines cannot become greater than
+
1
{\displaystyle \scriptstyle {+1}}
nor less than
−
1
{\displaystyle \scriptstyle {-1}}
, it follows that the above functions are defined for all values of
x
{\displaystyle \scriptstyle {x}}
ranging from
−
1
{\displaystyle \scriptstyle {-1}}
to
+
1
{\displaystyle \scriptstyle {+1}}
inclusive, but for no other values.
1. Given
f
(
x
)
=
x
3
−
10
x
2
+
31
x
−
30
{\displaystyle \scriptstyle {f(x)=x^{3}-10x^{2}+31x-30}}
; show that
f
(
0
)
=
−
30
,
f
(
2
)
=
0
,
f
(
3
)
=
f
(
5
)
,
f
(
1
)
>
f
(
−
3
)
,
f
(
−
1
)
=
−
6
f
(
6
)
.
f
(
y
)
=
y
3
−
10
y
2
+
31
y
−
30
,
f
(
a
)
=
a
3
−
10
a
2
+
31
a
−
30
,
f
(
y
z
)
=
y
3
z
3
−
10
y
2
z
2
+
31
y
z
−
30
,
f
(
x
−
2
)
=
x
3
−
16
x
2
+
83
x
−
140
,
{\displaystyle {\begin{array}{c c}{\begin{aligned}\scriptstyle {f(0)}&\scriptstyle {=-30,}\\\scriptstyle {f(2)}&\scriptstyle {=0,}\\\scriptstyle {f(3)}&\scriptstyle {=f(5),}\\\scriptstyle {f(1)}&\scriptstyle {>f(-3),}\\\scriptstyle {f(-1)}&\scriptstyle {=-6f(6).}\end{aligned}}&{\begin{aligned}\scriptstyle {f(y)}&\scriptstyle {=y^{3}-10y^{2}+31y-30,}\\\scriptstyle {f(a)}&\scriptstyle {=a^{3}-10a^{2}+31a-30,}\\\scriptstyle {f(yz)}&\scriptstyle {=y^{3}z^{3}-10y^{2}z^{2}+31yz-30,}\\\scriptstyle {f(x-2)}&\scriptstyle {=x^{3}-16x^{2}+83x-140,}\\\scriptstyle {}\end{aligned}}\end{array}}}
2. If
f
(
x
)
=
x
3
−
3
x
+
2
{\displaystyle \scriptstyle {f(x)=x^{3}-3x+2}}
, find
f
(
0
)
,
f
(
1
)
,
f
(
−
1
)
,
f
(
−
1
2
)
,
f
(
1
1
3
)
{\displaystyle \scriptstyle {f(0),\ f(1),\ f(-1),\ f(-{\frac {1}{2}}),\ f(1{\frac {1}{3}})}}
.
3. If
f
(
x
)
=
x
3
−
10
x
2
+
31
x
−
30
{\displaystyle \scriptstyle {f(x)=x^{3}-10x^{2}+31x-30}}
, and
ϕ
(
x
)
=
x
4
−
55
x
2
−
210
x
−
216
{\displaystyle \scriptstyle {\phi (x)=x^{4}-55x^{2}-210x-216}}
, show that
f
(
2
)
=
ϕ
(
−
2
)
,
f
(
3
)
=
ϕ
(
−
3
)
,
f
(
5
)
=
ϕ
(
−
4
)
,
f
(
0
)
+
ϕ
(
0
)
+
246
=
0
{\displaystyle \scriptstyle {f(2)=\phi (-2),\ f(3)=\phi (-3),\ f(5)=\phi (-4),\ f(0)+\phi (0)+246=0}}
.
4. If
F
(
x
)
=
2
x
{\displaystyle \scriptstyle {F(x)=2^{x}}}
, find
F
(
0
)
,
F
(
−
3
)
,
F
(
1
2
)
,
F
(
−
1
)
{\displaystyle \scriptstyle {F(0),\ F(-3),\ F({\frac {1}{2}}),\ F(-1)}}
.
5. Given
F
(
x
)
=
x
(
x
−
1
)
(
x
+
6
)
(
x
−
1
2
)
(
x
+
5
4
)
{\displaystyle \scriptstyle {F(x)=x(x-1)(x+6)(x-{\frac {1}{2}})(x+{\frac {5}{4}})}}
; show that
F
(
0
)
=
F
(
1
)
=
F
(
−
6
)
=
F
(
1
2
)
=
F
(
−
5
4
)
=
0
{\displaystyle \scriptstyle {F(0)=F(1)=F(-6)=F({\frac {1}{2}})=F(-{\frac {5}{4}})=0}}
.