6. If f ( m 1 ) = m 1 − 1 m 1 + 1 {\displaystyle \scriptstyle {f(m_{1})={\frac {m_{1}-1}{m_{1}+1}}}} , show that
f ( m 1 ) − f ( m 2 ) 1 + f ( m 1 ) f ( m 2 ) = m 1 − m 2 1 + m 1 m 2 {\displaystyle \scriptstyle {{\frac {f(m_{1})-f(m_{2})}{1+f(m_{1})f(m_{2})}}={\frac {m_{1}-m_{2}}{1+m_{1}m_{2}}}}} .
7. If ϕ ( x ) = a x {\displaystyle \scriptstyle {\phi (x)=a^{x}}} , show that ϕ ( y ) ⋅ ϕ ( z ) = ϕ ( y + z ) {\displaystyle \scriptstyle {\phi (y)\cdot \phi (z)=\phi (y+z)}} .
8. Given ϕ ( x ) = log 1 − x 1 + x {\displaystyle \scriptstyle {\phi (x)=\log {\frac {1-x}{1+x}}}} ; show that
ϕ ( x ) + ϕ ( y ) = ϕ ( x + y 1 + x y ) {\displaystyle \scriptstyle {\phi (x)+\phi (y)=\phi \left({\frac {x+y}{1+xy}}\right)}} .
9. If f ( ϕ ) = cos ϕ {\displaystyle \scriptstyle {f(\phi )=\cos \phi }} , show that
f ( ϕ ) = f ( − ϕ ) = − f ( π − ϕ ) = − f ( π + ϕ ) {\displaystyle \scriptstyle {f(\phi )=f(-\phi )=-f(\pi -\phi )=-f(\pi +\phi )}} .
10. If F ( θ ) = tan θ {\displaystyle \scriptstyle {F(\theta )=\tan \theta }} , show that
F ( 2 θ ) = 2 F ( θ ) 1 − [ F ( θ ) ] 2 {\displaystyle \scriptstyle {F(2\theta )={\frac {2F(\theta )}{1-[F(\theta )]^{2}}}}} .
11. Given ψ ( x ) = x 2 n + x 2 m + 1 {\displaystyle \scriptstyle {\psi (x)=x^{2n}+x^{2m}+1}} ; show that
ψ ( 1 ) = 3 , ψ ( 0 ) = 1 , ψ ( a ) = ψ ( − a ) {\displaystyle \scriptstyle {\psi (1)=3,\quad \psi (0)=1,\quad \psi (a)=\psi (-a)}} .