Page:Logic of Chance (1888).djvu/41

From Wikisource
Jump to navigation Jump to search
This page has been validated.
sect. 7.]
On certain kinds of Groups or Series.
11

common,—without this they would not be classed together. But there is also a distinction existing amongst them; a certain number of other attributes are to be found in some and are not to be found in others. In other words, the individuals which form the series are compound, each being made up of a collection of things or attributes; some of these things exist in all the members of the series, others are found in some only. So far there is nothing peculiar to the science of Probability; that in which the distinctive characteristic consists is this;—that the occasional attributes, as distinguished from the permanent, are found on an extended examination to tend to exist in a certain definite proportion of the whole number of cases. We cannot tell in any given instance whether they will be found or not, but as we go on examining more cases we find a growing uniformity. We find that the proportion of instances in which they are found to instances in which they are wanting, is gradually subject to less and less comparative variation, and approaches continually towards some apparently fixed value.

The above is the most comprehensive form of description; as a matter of fact the groups will in many cases take a far simpler form; they may appear, e.g. simply as a succession of things of the same kind, say human beings, with or without an occasional attribute, say that of being left-handed. We are using the word attribute, of course, in its widest sense, intending it to include every distinctive feature that can be observed in a thing, from essential qualities down to the merest accidents of time and place.

§ 7. On examining our series, therefore, we shall find that it may best be conceived, not necessarily as a succession of events happening in different ways, but as a succession of groups of things. These groups, on being analysed, are found in every case to be resolvable into collections of sub-