Page:Logic of Chance (1888).djvu/46

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
16
On certain kinds of Groups or Series.
[chap. i.

are not, strictly speaking, exceptions. A type, that is, which shall be in the fullest sense of the words, persistent and invariable is scarcely to be found in nature. The full import of this conclusion will be seen in future chapters. Attention is only directed here to the important inference that, although statistics are notoriously of no value unless they are in sufficient numbers, yet it does not follow but that in certain cases we may have too many of them. If they are made too extensive, they may again fall short, at least for any particular time or place, of their greatest attainable accuracy.

§ 12. These natural uniformities then are found at length to be subject to fluctuation. Now contrast with them any of the uniformities afforded by games of chance; these latter seem to show no trace of secular fluctuation, however long we may continue our examination of them. Criticisms will be offered, in the course of the following chapters, upon some of the common attempts to prove a priori that there must be this fixity in the uniformity in question, but of its existence there can scarcely be much doubt. Pence give heads and tails about equally often now, as they did when they were first tossed, and as we believe they will continue to do, so long as the present order of things continues. The fixity of these uniformities may not be as absolute as is commonly supposed, but no amount of experience which we need take into account is likely in any appreciable degree to interfere with them. Hence the obvious contrast, that, whereas natural uniformities at length fluctuate, those afforded by games of chance seem fixed for ever.

§ 13. Here then are series apparently of two different kinds. They are alike in their initial irregularity, alike in their subsequent regularity; it is in what we may term their ultimate form that they begin to diverge from each other. The one tends without any irregular variation