Page:Logic of Chance (1888).djvu/48

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
18
On certain kinds of Groups or Series.
[chap. i.

small scale, utterly irregular; it becomes however regular when the numbers examined are on a larger scale; but if we continued our observation for a very great length of time, or over a very great extent of country, we should find this regularity itself changing in an irregular way. The substitution just mentioned is really equivalent to saying, Let us assume that the regularity is fixed and permanent. It is making a hypothesis which may not be altogether consistent with fact, but which is forced upon us for the purpose of securing precision of statement and definition.

§ 14. The full meaning and bearing of such a substitution will only become apparent in some of the subsequent chapters, but it may be pointed out at once that it is in this way only that we can with perfect strictness introduce the notion of a ‘limit’ into our account of the matter, at any rate in reference to many of the applications of the subject to purely statistical enquiries. We say that a certain proportion begins to prevail among the events in the long run; but then on looking closer at the facts we find that we have to express ourselves hypothetically, and to say that if present circumstances remain as they are, the long run will show its characteristics without disturbance. When, as is often the case, we know nothing accurately of the circumstances by which the succession of events is brought about, but have strong reasons to suspect that these circumstances are likely to undergo some change, there is really nothing else to be done. We can only introduce the conception of a limit, towards which the numbers are tending, by assuming that these circumstances do not change; in other words, by substituting a series with a fixed uniformity for the actual one with the varying uniformity[1].

  1. The mathematician may illustrate the nature of this substitution by the analogies of the ‘circle of curvature’ in geometry, and the ‘instantaneous ellipse’ in astronomy. In the cases in which these conceptions are made use of we have a phenomenon which is continuously varying and also changing its rate of variation. We take it at some given moment, suppose its rate at that moment to be fixed, and then complete its career on that supposition.