Page:Philosophical Transactions - Volume 003.djvu/125

From Wikisource
Jump to navigation Jump to search
This page needs to be proofread.

(748)

Censure, which, en passant, he thought fit, being desired, to give of that Book, and maketh the Omission thereof the chief ground of his Complaint in his said Letters, it seems unavoidable to comply with him in that demand, and to publish, what (out of respect to the same) was supprest ever since that Vindication was printed, with which it then came joyned, as follows;


— ——Sed revera (ut quod res est dicam) D. Du Laurens eorum, quæ scribit, negligentior est, quam Mathematicum deceat. Cujus quidem specimim, ne hac vice longius petitum abeamus, in hoc Montfertii problemate, ut à D. Du Laurens exposito, satis suppetunt.

Cur pro extremis Ellipseos diametis (hoc est, maxima & minima, perperam substituat, Diametris maximis (quasi in Elllpsi plures essent maximæ diametri) causa, desidero, quæ oscitantiam excuset.

Similiter; Ubi substituitur in transversa ejus diametro, pro, in Axe transverso (quasi vel Unica esset Diameter transversa vel præter Axes nulla; vel, in quavis indifferenter transversa-diametro assignari punctum, intelligendum esset; etiam cum, præter Axes, nulla sit data.) Dixisset utique pari jure, ubivis intra Ellipsin assignato. quippe nullum est intra Ellipsin punctum, quod not sit in aliqua transversa-diametro.

Insuper; cum imperatum sit, ut, quæ Requiruntur, Numeris exhiheantur, consentaneum esset, ut & quæ Dari perhibentur etiam Numeris Data essent. Adeoque pro, Datis Ellypseos Diametris maximis, dixisset potius, Ellipseos Diametrius Extrermis (non maximis,) per numeros designatis vel in numeris datis. Item, pro, tum assignato puncto in transversa ejus Diametro (ubi, puncto in numeris data, minus conveniret;) potius dixisset, punctoque in utrovis Axe transverso (non transversa diametro) per suam vel à Cenrto, vel à Vertice, distancium, numero designatam, assignato. Item, pro, Segmenta lineæ intra Ellypsin terminatæ (quod neutrum vel Lineæ, vel Segmentorum ejus, extremum determinat;) dixisset potius, Segmenta rectæ, Ellipsi (non, intra Ellypsin) terminatæ, in puncto illo fectæ; vel, Segmenta rectæ per punctum illud transeuntis, huic Axi (seu Puncto) & Ellipsi interjecta; vel, rectae Segmenta. Ellipsi & Puncto illo terminata; vel, quod sit ίσοδόυαμγ, quod tum rectæ extrema, yum punctum Sectionis designaret; quorum neutra ipsius verbis determinantur, sed conjecturæ permittuntur.

Atque hæc in una Propositione (eaque non longq) tam multiplex incuria, eo minus veniam meretur, quoniam Montfertii Problema, quod Du Laurens tam imperfecte recitat, multo felicius exaratum erat, quud itaq; D. Du Laurens vel in melius mutasset, vel non mutasset. Undecunque enim hoc Problema desumpserit (sive ex typis edito Montfertii proplemate, sive ex Wrennii solutione, typis item edita, sive ex meis editis libris) non potuit non videre Problema illud felicius conceptum; sed &, quod Jean de Montfert (non Johannis Wallisius) proposuerat.

Sed