reasoned, would produce faint sounds, while highly athermanous bodies would produce loud sounds; the strength of the sound being, in a sense, a measure of the absorption. The first experiment made, with a view of testing this idea, was executed in the presence of Mr. Graham Bell;[1] and the result was in exact accordance with what I had foreseen.
The inquiry has been recently extended so as to embrace most of the gases and vapors employed in my former researches. My first source of rays was a Siemens lamp connected with a dynamo-machine, worked by a gas-engine. A glass lens was used to concentrate the rays, and afterward two lenses. By the first the rays were rendered parallel, while the second caused them to converge to a point about seven inches distant from the lens. A circle of sheet-zinc provided first with radial slits and afterward with teeth and interspaces, cut through it, was mounted vertically on a whirling table, and caused to rotate rapidly across the beam near the focus. The passage of the slits produced the desired intermittence,[2] while a flask containing the gas or vapor to be examined received the shocks of the beam immediately behind the rotating disk. From the flask a tube of India-rubber, ending in a tapering one of ivory or boxwood, led to the ear, which was thus rendered keenly sensitive to any sound generated within the flask. Compared with the beautiful apparatus of Mr. Graham Bell, the arrangement here described is rude; it is, however, very effective.
With this arrangement the number of sounding gases and vapors was rapidly increased. But I was soon made aware that the glass lenses withdrew from the beam its most effectual rays. The silvered mirrors employed in my previous researches were therefore invoked; and with them, acting sometimes singly and sometimes as conjugate mirrors, the curious and striking results which I have now the honor to submit to the Society were obtained.
Sulphuric ether, formic ether, and acetic ether, being placed in bulbous flasks,[3] their vapors were soon diffused in the air above the liquid. On placing these flasks, whose bottoms only were covered by the liquid, behind the rotating disk, so that the intermittent beam
- ↑ On the 29th November: see "Journal of the Society of Telegraph Engineers," December 8, 1880.
- ↑ When the disk rotates, the individual slits disappear, forming a hazy zone through which objects are visible. Throwing by the clean hand, or better still by white paper, the beam back upon the disk, it appears to stand still, the slits forming so many dark rectangles. The reason is obvious, but the experiment is a very beautiful one. I may add that when I stand with open eyes in the flashing beam, at a definite velocity of recurrence, subjective colors of extraordinary gorgeousness are produced. With slower or quicker rates of rotation the colors disappear. The flashes also produce a giddiness sometimes intense enough to cause me to grasp the table to keep myself erect.
- ↑ I have employed flasks measuring from eight inches to three-fourths of an inch in diameter. The smallest flask, which had a stem with a bore of about one eighth of an inch in diameter, yielded better effects than the largest. Flasks from two to three inches in diameter yield good results. Ordinary test-tubes also answer well.