Page:Popular Science Monthly Volume 19.djvu/46

From Wikisource
Jump to navigation Jump to search
This page has been validated.
36
THE POPULAR SCIENCE MONTHLY.

passed through the vapor, loud musical tones were in each case obtained. These are known to be the most highly absorbent vapors which my experiments revealed. Chloroform and bisulphide of carbon, on the other hand, are known to be the least absorbent, the latter standing near the head of diathermanous vapors. The sounds extracted from these two substances were usually weak and sometimes barely audible, being more feeble with the bisulphide than with the chloroform. With regard to the vapors of amylene, iodide of ethyl, iodide of methyl and benzol, other things being equal, their power to produce musical tones appeared to be accurately expressed by their ability to absorb radiant heat.

It is the vapor, and not the liquid, that is effective in producing the sounds. Taking, for example, the bottles in which my volatile substances are habitually kept, I permitted the intermittent beam to impinge upon the liquid in each of them. No sound was in any case produced, while, the moment the vapor-laden space above an active liquid was traversed by the beam, musical tones made themselves audible.

A rock-salt cell filled entirely with a volatile liquid, and subjected to the intermittent beam, produced no sound. This cell was circular and closed at the top. Once, while operating with a highly athermanous substance, a distinct musical note was heard. On examining the cell, however, a small bubble was found at its top. The bubble was less than a quarter of an inch in diameter, but still sufficient to produce audible sounds. When the cell was completely filled, the sounds disappeared.

It is hardly necessary to state that the pitch of the note obtained in each case is determined by the velocity of rotation. It is the same as that produced by blowing against the rotating disk and allowing its slits to act like the perforations of a siren.

Thus, as regards vapors, prevision has been justified by experiment. I now turn to gases. A small flask, after having been heated in the spirit-lamp so as to detach all moisture from its sides, was carefully filled with dried air. Placed in the intermittent beam it yielded a musical note, but so feeble as to be heard only with attention. Dry oxygen and hydrogen behaved like dry air. This agrees with my former experiments, which assigned a hardly sensible absorption to these gases. When the dry air was displaced by carbonic acid, the sound was far louder than that obtained from any of the elementary gases. When the carbonic acid was displaced by nitrous oxide, the sound was much more forcible still, and, when the nitrous oxide was displaced by olefiant gas, it gave birth to a musical note which, when the beam was in good condition and the bulb well chosen, seemed as loud as that of an ordinary organ-pipe.[1] We have here the exact order

  1. With conjugate mirrors, the sounds with olefiant gas are readily obtained at a distance of twenty yards from the lamp. I hope to be able to make a candle-flame effective in these experiments.