them by a growing science, and I think that the almost unavoidable use of the word equivalent, in the statement of the first law, is partly responsible for the little attention that is given to the second. For the second law so far contradicts the usual statement of the first as to assert that equivalents of heat and work are not of equal value. While work can always be converted into heat, heat can only be converted into work under certain limitations. For every practical purpose the work is worth the most, and when we speak of equivalents we use the word in the same sort of special sense as that in which chemists speak of equivalents of gold and iron. The second law teaches us that the real value of heat, as a source of mechanical power, depends upon the temperature of the body in which it resides; the hotter the body in relation to its surroundings, the more available the heat.
In order to see the relations which obtain between the first and the second law of thermo-dynamics, it is only necessary for us to glance at the theory of the steam-engine. Not many years ago calculations were plentiful, demonstrating the inefficiency of the steam-engine on the basis of a comparison of the work actually got out of the engine with the mechanical equivalent of the heat supplied to the boiler. Such calculations took into account only the first law of thermo-dynamics, which deals with the equivalents of heat and work, and have very little bearing upon the practical question of efficiency, which requires us to have regard also to the second law. According to that law, the fraction of the total energy which can be converted into work depends upon the relative temperatures of the boiler and condenser; and it is, therefore, manifest that, as the temperature of the boiler can not be raised indefinitely, it is impossible to utilize all the energy which, according to the first law of thermo-dynamics, is resident in the coal.
On a sounder view of the matter, the efficiency of the steam-engine is found to be so high that there is no great margin remaining for improvement. The higher initial temperature possible in the gas-engine opens out much wider possibilities, and many good judges look forward to a time when the steam-engine will have to give way to its younger rival.
To return to the theoretical question, we may say with Sir W. Thomson that, though energy can not be destroyed, it ever tends to be dissipated, or to pass from more available to less available forms. No one who has grasped this principle can fail to recognize its immense importance in the system of the universe. Every change—chemical, thermal, or mechanical—which takes place, or can take place, in Nature does so at the cost of a certain amount of available energy. If, therefore, we wish to inquire whether or not a proposed transformation can take place, the question to be considered is whether its occurrence would involve dissipation of energy. If not, the trans-