Page:Popular Science Monthly Volume 71.djvu/347

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
ADDRESS BEFORE BRITISH ASSOCIATION
341

Not, however, until the magnetic effects of the current had been discovered and investigated did telegraphy assume commercial shape at the hands of Cooke and Wheatstone in England and of Morse and Vail in America. Let us admit freely that these men were inventors rather than discoverers: exploiters of research rather than pioneers. They built upon the foundations laid by Volta, Oersted, Sturgeon, Henry and a host of less famous workers. But no sooner had the telegraph become of industrial importance, with telegraph lines erected on land and submarine cables laid in the sea, than fresh investigations were found necessary; new and delicate instruments must be devised; means of accurate measurement heretofore undreamed of must be found; standards for the comparison of electrical quantities must be created; and the laws governing the operations of electrical systems and apparatus must be investigated and formulated in appropriate mathematical expressions. And so, perforce, as the inevitable consequence of the growth of the telegraph industry, and mainly at the hands of those interested in submarine telegraphy, there came about the system of electrical and electromagnetic units, based on the early magnetic work of Gauss and Weber, developed further by Lord Kelvin, by Bright and Clark, and last but not least by Clerk Maxwell. Had there been no telegraph industry to force electrical measurement and electrical theory to the front, where would Clerk Maxwell's work have been? He would probably have given his unique powers to the study of optics or geometry; his electromagnetic theory of light would never have leaped into his brain; he would never have propounded the existence of electric waves in the ether. And then we should never have had the far-reaching investigations of Heinrich Hertz; nor would the British Association at Oxford in 1894 have witnessed the demonstration of wireless telegraphy by Sir Oliver Lodge. A remark of Lord Rayleigh's may here be recalled, that the invention of the telephone had probably done more than anything else to make electricians understand the principle of self-induction.

In considering this reflex influence of the industrial applications upon the progress of pure science it is of some significance to note that for the most part this influence is entirely helpful. There may be sporadic cases where industrial conditions tend temporarily to check progress by imposing persistence of a particular type of machine or appliance; but the general trend is always to help to new developments. The reaction aids the action; the law that is true enough in inorganic conservative systems, that reaction opposes the action, ceases here to be applicable, as indeed it ceases to be applicable in a vast number of organic phenomena. It is the very instability thereby introduced which is the essential of progress. The growing organism acts on its environment, and the change in the environment reacts on the