Page:Popular Science Monthly Volume 9.djvu/284

From Wikisource
Jump to navigation Jump to search
This page has been validated.
262
THE POPULAR SCIENCE MONTHLY.

suspended on it. I hold the bar, and turn it half round; it swings backward and forward for a few times, but it quickly comes back to its original position. However much twist, however much torsion, may be put on this, it always returns ultimately to the same position. I have twisted glass fibres round and kept them in a permanent state of twist more than a hundred complete revolutions, and they always came back accurately to zero. The principle of an instrument that I shall describe farther on depends entirely on this property of glass.

Instead of using silk to suspend the torsion-beam with, I employ a fibre of glass, drawn out very fine before the blow-pipe. A thread of glass of less than the thousandth of an inch in thickness is wonderfully strong, of great stiffness, and of perfect elasticity, so that, however much it is twisted round short of the breaking-point, it untwists itself perfectly when liberated. The advantage of using glass fibres for suspending my beam is, therefore, that it always returns accurately to zero after having tried an experiment, while I can get any desired amount of sensitiveness by drawing out the glass fibre sufficiently fine.

Here, then, is the torsion apparatus sealed on to a Sprengel pump. You will easily understand the construction by reference to the diagram (Fig. 4). It consists of an horizontal beam suspended by a glass fibre, and having disks of pith at each end coated with lampblack. The whole is inclosed in a glass case, made of tubes blown together, and by means of the pump the air is entirely removed. In the centre of the horizontal beam is a silvered mirror, and a ray from the electric light is reflected from it on to a scale in front, where it is visible as a small circular spot of light. It is evident that an angular movement of the torsion-beam will cause the spot of light to move to the right or to the left along the scale. I will first show you the wonderful sensitiveness of the apparatus. I simply place my finger near the pith-disk at one end, and the warmth is quite sufficient to drive the spot of light several inches along the scale. It has now returned to zero, and I place a candle near it. The spot of light flies off the scale. I now bring the candle near it alternately from one side to the other, and you see how perfectly it obeys the force of the candle. I think the movement is almost better seen without the screen than with it. The fog, which has been so great a detriment to every one else, is rather in my favor, for it shows the luminous index like a solid bar of light swaying to and fro across the room. The warmth of my finger, or the radiation from a candle, is therefore seen to drive the pith-disk away. Here is a lump of ice, and on bringing it near one of the disks the luminous index promptly shows a movement of apparent attraction.

With this apparatus I have tried many experiments, and among others I endeavored to answer the question, "Is it light, or is it heat, that produces the movement?"—for that is a question that is asked