Jump to content

Page:Popular Science Monthly Volume 9.djvu/285

From Wikisource
This page has been validated.
THE MECHANICAL ACTION OF LIGHT.
263

me by almost every one; and a good many appear to think that, if the motion can be explained by an action of heat, all the novelty and the importance of the discovery vanish. Now, this question of light or heat is one I cannot answer, and I think that when I have explained the reason you will agree with me that it is unanswerable. There is no physical difference between light and heat. Here is a diagram of the visible spectrum (Fig. 5). The spectrum, as scientific

Fig. 5.

men understand it, extends from an indefinite distance beyond the red to an indefinite distance beyond the violet. We do not know how far it would extend one way or the other if no absorbing media were present; but, by what we may call a physiological accident, the human eye is sensitive to a portion of the spectrum situated between the line A in the red to about the line H in the violet. But this is not a physical difference between the luminous and non-luminous parts of the spectrum; it is only a physiological difference. Now, the part at the red end of the spectrum possesses, in the greatest degree, the property of causing the sensation of warmth, and of dilating the mercury in a thermometer, and of doing other things which are conveniently classed among the effects of heat; the centre part affects the eye, and is therefore called light; while the part at the other end of the spectrum has the greatest energy in producing chemical action. But it must not be forgotten that any ray of the spectrum, from whatever part it is selected, will produce all these physical actions in more or less degree. A ray here, at the letter C for instance in the orange, if concentrated on the bulb of a thermometer, will cause the mercury to dilate, and thus show the presence of heat; if concentrated on my hand I feel warmth; if I throw it on the face of a thermo-pile it will produce a current of electricity; if I throw it upon a sensitive photographic plate it will produce chemical action; and if I throw it upon the instrument I have just described it will produce motion. What, then, am I to call that ray? Is it light, heat, electricity, chemical action, or motion? It is neither. All these actions are inseparable