Jump to content

Page:Popular Science Monthly Volume 9.djvu/289

From Wikisource
This page has been validated.
THE MECHANICAL ACTION OF LIGHT.
267

pith equally in opposite directions, and the luminous index remains at zero. When, however, I cut one candle off, the candle on the opposite side exerts its full influence, and the index flies to one end of the scale. I cut the other one off and obscure the first, and the spot of light flies to the other side. I obscure them both, and the index comes quickly to zero. I remove the screens simultaneously, and the index does not move.

I will retain one candle 12 inches off, and put two candles on the other side 17 inches off. On removing the screens you see the index does not move from zero. Now the square of 12 is 144, and the square of 17 is 289. Twice 144 is 288. The light of these candles, therefore, is as 288 to 289. They therefore balance each other as nearly as possible. Similarly I can balance a gaslight against a candle. I have a small gas-burner here, which I place 28 inches off on one side, and you see it balances the candle 12 inches off. These experiments show how conveniently and accurately this instrument can be used as a photometer. By balancing a standard candle on one side against any source of light on the other, the value of the latter in terms of a candle is readily shown; thus in the last experiment the standard candle 12 inches off is balanced by a gas-flame 28 inches off. The lights are, therefore, in the proportion of 12² to 28², or as 1 to 5.4. The gas-burner is, therefore, equal to about five and a half candles.

In practical work on photometry it is often required to ascertain the value of gas. Gas is spoken of commercially as of so many candle-power. There is a certain "standard" candle which is supposed to be made invariable by act of Parliament. I have worked a great deal with these standard candles, and I find them to be among the most variable things in the world. They never burn with the same luminosity from one hour to the other, and no two candles are alike. I can now, however, easily get over this difficulty. I place a "standard" candle at such a distance from the apparatus that it gives a deflection of 100° on the scale. If it is poorer than the standard, I bring it nearer; if better, I put it farther off. Indeed, any candle may be taken; and if it be placed at such a distance from the apparatus that it will give a uniform deflection, say, of 100 divisions, the standard can be reproduced at any subsequent time; and the burning of the candle may be tested during the photometric experiments by taking the deflection it causes from time to time, and altering its distance, if needed, to keep the deflection at 100 divisions. The gaslight to be tested is placed at such a distance on the opposite side of the pith-bar that it exactly balances the candle. Then, by squaring the distances, I get the exact proportion between the gas and the candle.

Before this instrument can be used as a photometer or light-measurer, means must be taken to cut off from it all those rays coming from the candle or gas which are not actually luminous. A reference