Page:Popular Science Monthly Volume 9.djvu/290

From Wikisource
Jump to navigation Jump to search
This page has been validated.
268
THE POPULAR SCIENCE MONTHLY.

to the spectrum diagram (Fig. 5) will show that at each end of the colored rays there is a large space inactive, as far as the eye is concerned, but active in respect to the production of motion—strongly so at the red end, less strong at the violet end. Before the instrument can be used to measure luminosity, these rays must be cut off. We buy gas for the light that it gives, not for the heat that it evolves on burning, and it would therefore never do to measure the heat and pay for it as light.

It has been found that a clear plate of alum, while letting all the light through, is almost if not quite opaque to the heating rays below the red. A solution of alum in water is almost as effective as a crystal of alum; if, therefore, I place in front of the instrument glass cells containing an aqueous solution of alum, the dark heat-rays are filtered off.

But the ultra-violet rays still pass through, and to cut these off I dissolve in the alum-solution a quantity of sulphate of quinine. This body has the property of cutting off the ultra-violet rays from a point between the lines G and H. A combination of alum and sulphate of quinine, therefore, limits the action to those rays which affect the human eye, and the instrument, such as you see it before you, becomes a true photometer.

This instrument, when its sensitiveness is not deadened by the powerful control magnet I am obliged to keep near it for these experiments, is wonderfully sensible to light. In my own laboratory, a candle thirty-six feet off produces a decided movement, and the motion of the index increases inversely with the square of the distance, thus answering the third question, "Is the amount of action in direct proportion to the amount of radiation?"

The experimental observations and the numbers which are required by the theoretical diminution of light with the square of the distance are sufficiently close, as the following figures show:

Candle 6 feet off gives a deflection of 218 .0°
" 12 "" 54 .0°
" 18 "" 24 .5°
" 24 "" 13 .0°
" 10 "" 77 .0°
" 20 "" 19 .0°
" 30 "" 8 .5°

The effect of two candles side by side is practically double, and of three candles three times that of one candle.

In the instrument just described, the candle acts on a pith-bar, one end of which is blacked on each side. But suppose I black the bar on alternate halves, and place a light near it sufficiently strong to drive the bar half round. The light will now have presented to it another black surface in the same position as the first, and the bar will be again driven in the same direction half round. This action will