instrument, and proving that in this case also the radiometer obeys the law of inverse squares.
This instrument, the principle of which I have illustrated to-night, is not a mere toy or scientific curiosity, but it is capable of giving much useful information in climatology. You are well aware that the temperature, the rainfall, the atmospheric pressure, the direction and force of the wind, are now carefully studied in most countries, in order to elucidate their sanitary condition, their animal and vegetable productions, and their agricultural capabilities. But one most important element, the amount of light received at any given place, has been hitherto but very crudely and approximately estimated, or rather guessed at. Yet it cannot be denied that sunlight has its effect upon life and health, vegetable, animal, and human, and that its relative amount at any place is hence a point of no small moment. The difficulty is now overcome by such an instrument as this. The radiometer may be permanently placed on some tall building, or high mountain, and, by connecting it by telegraphic wires to a central observatory, an exact account can be kept of the proportion of sunlight received in different latitudes, and at various heights above the sea-level. Furthermore, our records of the comparative temperature of different places have been hitherto deficient. The temperature of a country depends partly on the amount of rays which it receives direct from the sun, and partly on the atmospheric and oceanic currents, warm or cold, which sweep over or near it. The thermometer does not discriminate between these influences; but the radiometer will enable us now to distinguish how much of the annual temperature of a place is due to the direct influence of the sun alone, and how much to the other factors above referred to.
I now come to the last question which I stated at the beginning of this lecture, "What is the amount of force exerted by radiation?" Well, I can calculate out the force in a certain way, from data supplied by this torsion apparatus (Fig. 4). Knowing the weight of the beam, the power of the torsion fibre of glass, its time of oscillation, and the size of the surface acted on, it is not difficult to calculate the amount of force required to deflect the beam through a given angle; but I want to get a more direct measure of the force. I throw a ray of light upon one of these instruments, and it gives a push; surely it is possible to measure the amount of this push in parts of a grain. This I have succeeded in doing in the instrument behind me; but before showing the experiment I want to illustrate the principle upon which it depends. Here is a very fine glass fibre suspended from an horizontal bar, and I wish to show you the strength of it. The fibre is only a few thousandths of an inch thick; it is about three feet long, and at the lower end is hanging a scale-pan, weighing 100 grains. So I start with a pull of 100 grains on it. I now add little lead weights, 50 grains each, till it breaks. It bears a pull of 750 grains,