Page:Popular Science Monthly Volume 9.djvu/297

From Wikisource
Jump to navigation Jump to search
This page has been validated.
THE MECHANICAL ACTION OF LIGHT.
275

but gives way when additional weight is added. You see, then, the great strength of a fibre of glass, so fine as to be invisible to all who are not close to it, to resist a tensile strain.

Now I will illustrate another equally important property of a glass thread, viz., its power to resist torsion. Here is a still finer glass thread, stretched horizontally between two supports; and in order to show its position I have put little jockeys of paper on it. One end is cemented firmly to a wooden block, and the other end is attached to a little instrument called a counter—a little machine for registering the number of revolutions. I now turn this handle till the fibre breaks, and the counter will tell me how many twists I have given this fibre of glass. You see it breaks at twenty revolutions. This is rather a thicker fibre than usual. I have had them bear more than 200 turns without breaking, and some that I have worked with are so fine that if I hold one of them by the end it curls itself up and floats about the room like a piece of spider's thread.

Having now illustrated these properties of glass fibres, I will try to show a very delicate experiment. I want to ascertain the amount of pressure which radiation exerts on a blackened surface. I will put a ray of light on the pan of a balance, and give you its weight in grains, for I think in this Institution and before this audience I may be allowed a scientific use of the imagination, and may speak of weighing that which is not affected by gravitation.

The principle of the instrument is that of W. Ritchie's torsion balance, described by him in the "Philosophical Transactions" for 1830. The construction is somewhat complicated, but it can be made out on reference to the diagram (Fig. 11). A light beam, A B, having two square inches of pith, C, at one end, is balanced on a very fine fibre of glass, D D', stretched horizontally in a tube; one end of the fibre being connected with a torsion handle, E, passing through the tube, and indicating angular movements on a graduated circle. The beam is cemented to the torsion fibre, and the whole is inclosed in glass, and connected with the mercury pump by a spiral tube, F, and exhausted as perfectly as possible. G is a spiral spring, to keep the fibre in a uniform state of tension, H is a piece of cocoon silk. I is a glass stopper, which is ground into the tube as perfectly as possible, and then highly polished and lubricated with melted India-rubber, which is the only substance I know that allows perfect lubrication and will still hold a vacuum. The pith, C, represents the scale-pan of the balance. The cross-beam A B, which carries it, is cemented firmly to the thin glass fibre, D, and in the centre is a piece of mirror, K. Now, the cross-beam A B and the fibre D being rigidly connected together, any twist which I give to the torsion handle E will throw the beam out of adjustment. If, on the other hand, I place a weight on the piece of pith C, that end of the beam will fall down, and I shall have to turn the handle, E, round and round a cer-