The radiation of a candle 6 inches off, therefore, weighs or presses the two square inches of blackened pith with a weight of 0.001624 grain. In my own laboratory, working with this torsion balance, I found that a candle 6 inches off gave a pressure of 0.001772 grain. The difference is only 0.000148 grain, and is fairly within the allowable limits of a lecture experiment. But this balance is capable of weighing to far greater accuracy than that. You have seen that a torsion of 10,021° balanced the hundredth of a grain. If I give the fibre 1 more twist the weight is overbalanced, as shown by the movement of the index-ray on the ceiling. Now 1° of torsion is about the 110000 part of the whole torsion required by the 1100 grain. It represents, therefore, the 110000 part of the 1100, or the millionth part of a grain.
Divide a grain-weight into a million parts, place one of them on the pan of the balance, and the beam will be instantly depressed!
Weighed in this balance the mechanical force of a candle 12 inches off was found to be 0.000444 grain; of a candle 6 inches off, 0.001772 grain. At half the distance the weight of radiation should be four times, or 0.001776 grain; the difference between theory and experiment being only four-millionths of a grain is a sufficient proof that the indications of this instrument, like those of the apparatus previously described, follow the law of inverse squares. An examination of the differences between the separate observations and the mean shows that my estimate of the sensitiveness of this balance is not excessive, and that in practice it will safely indicate the millionth of a grain.
I have only had one opportunity of getting an observation of the weight of sunlight: it was taken on December 13th, but the sun was so obscured by thin clouds and haze that it was only equal to 10.2 candles 6 inches off. Calculating from this datum, it is seen that the pressure of sunshine is 2.3 tons per square mile.
But, however fair an equivalent ten candles may be for a London sun in December, a midsummer sun in a cloudless sky has a very different value. Authorities differ as to its exact equivalent, but I underestimate it at 1,000 candles 12 inches off.
Let us see what pressure this wall give: A candle 12 inches off, acting on 2 square inches of surface, was found equal to 0.000444 grain; the sun, equaling 1,000 candles, therefore gives a pressure of 0.444000 grain; that is equal to about 32 grains per square foot, to 2 cwts. per acre, 57 tons per square mile, or nearly 3,000,000,000 tons on the exposed surface of the globe—sufficient to knock the earth out of its orbit if it came upon it suddenly.
It may be said that a force like this must alter our ordinary ideas of gravitation; but it must be remembered that we only know the force of gravity as between bodies such as they actually exist, and we do not know what this force would be if the temperatures of the gravi-