Page:Popular Science Monthly Volume 9.djvu/301

From Wikisource
Jump to navigation Jump to search
This page has been validated.
THE MECHANICAL ACTION OF LIGHT.
279

tating masses were to undergo a change. If the sun is gradually cooling, possibly its attractive force is increasing, but the rate will be so slow that it will probably not be detected by our present means of research.

While showing this experiment I wish to have it distinctly understood that I do not attach the least importance to the actual numerical results. I simply wish to show you the marvelous sensitiveness of the apparatus with which I am accustomed to work. I may, indeed, say that I know these rough estimates to be incorrect. It must be remembered that our earth is not a lampblacked body inclosed in a glass case, nor is its shape such as to give the maximum of surface with the minimum of weight. The solar forces which perpetually pour on it are not simply absorbed and degraded into radiant heat, but are transformed into the various forms of motion we see around us, and into the countless forms of vegetable, animal, and human activity. The earth, it is true, is poised in vacuous space, but it is surrounded by a cushion of air; and, knowing how strongly a little air stops the movement of repulsion, it is easy to conceive that the sun's radiation through this atmospheric layer may not produce any important amount of repulsion. It is true the upper surface of our atmosphere must present a very cold front, and this might suffer repulsion by the sun; but I have said enough to show how utterly in the dark we are as to the cosmical bearings of this action of radiation, and further speculation would be but waste of time.

It may be of interest to compare these experimental results with a calculation made in 1873, before any knowledge of these facts had been made public.

Prof. Clerk Maxwell, in his "Electricity and Magnetism," vol. ii., p. 391, writes as follows: "The mean energy in one cubic foot of sunlight is about 0.0000000882 of a foot-pound, and the mean pressure on a square foot is 0.0000000882 of a pound-weight. A flat body exposed to sunlight would experience this pressure on its illuminated side only, and would therefore be repelled from the side on which the light falls."

Calculated out, this gives the pressure of sunlight equal to about two and a half pounds per square mile. Between the two and a half pounds deduced from calculation and the fifty-seven tons obtained from experiment the difference is great; but not greater than is often the case between theory and experiment.

In conclusion, I beg to call especial attention to one not unimportant lesson which may be gathered from this discovery. It will be at once seen that the whole springs from the investigation of an anomaly. Such a result is by no means singular. Anomalies may be regarded as the finger-posts along the high-road of research, pointing to the by-ways which lead to further discoveries. As scientific men are well aware, our way of accounting for any given phenomenon is not