Page:Radio-activity.djvu/287

From Wikisource
Jump to navigation Jump to search
This page needs to be proofread.

was determined at intervals, commencing about two minutes after the introduction of the emanation. The amount observed at first was extremely small, but increased rapidly and practically reached a maximum in three or four hours. Thus the radium emanation only gives out α rays, the β rays appearing as the excited activity is produced on the walls of the vessel. On sweeping out the emanation by a current of air, there was no immediately appreciable decrease of the radiation. This is another proof that the emanation does not emit any β rays. In a similar way it can be shown that the emanation does not give out γ rays; these rays always make their appearance at the same time as the β rays.

The method of examination of the radiations from the emanations has been given in some detail, as the results are of considerable importance in the discussion, which will be given later in chapters X and XI, of the connection between the changes occurring in radio-active products and the radiations they emit. There is no doubt that the emanations, apart from the excited activity to which they give rise, only give out α rays, consisting most probably of positively charged bodies projected with great velocity.


Effect of pressure on the rate of production of the Emanation.


157. It has already been mentioned that the conductivity due to the thorium emanation is proportional to the pressure of the gas, pointing to the conclusion that the rate of production of the emanation is independent of the pressure, as well as of the nature of the surrounding gas. This result was directly confirmed with the apparatus of Fig. 55. When the pressure of the gas under the vessel was slowly reduced, the radiation, tested outside the window, increased to a limit, and then remained constant over a wide range of pressure. This increase, which was far more marked in air than in hydrogen, is due to the fact that the α rays from the emanation were partially absorbed in the gas inside the vessel when at atmospheric pressure. At pressures of the order of 1 millimetre of mercury the external radiation decreased, but experiment showed that this must be ascribed to a removal of the emanation by the pump, and not to a change in the rate of