Page:Radio-activity.djvu/508

From Wikisource
Jump to navigation Jump to search
This page needs to be proofread.

calculation will be made to indicate the order of magnitude of the time that has elapsed since the mineral was formed or was at a temperature low enough to prevent the escape of the helium.

Let us take, for example, the mineral fergusonite, which was found by Ramsay and Travers[1] to evolve 1·81 c.c. of helium. The fergusonite contained about 7 per cent. of uranium. Now uranium in old minerals probably contains about 8 × 10^{-7} of its weight of radium (see section 262). One gram of the mineral thus contained about 5·6 × 10^{-8} grams of radium. Now if the α particle is helium, it has been shown that 1 gram of radium produces 0·24 c.c. of helium per year. The volume of helium produced per year in 1 gram of fergusonite is thus 1·3 × 10^{-8} c.c. Assuming that the rate of production of helium has been uniform, the time required to produce 1·81 c.c. per gram is about 140 million years. If the calculated rate of production of helium by radium is an overestimate, the time is correspondingly lengthened.

I think that, when the constants required for these calculations are more definitely fixed, this method will probably give fairly trustworthy information as to the probable age of some of the radio-active minerals of the earth's crust, and indirectly as to the age of the strata in which they are found.

In this connection it is of interest to note that Ramsay[2] found that a Ceylon mineral, thorianite, contained as much as 9·5 c.c. of helium per gram. According to the analysis by Dunstan, this mineral contains about 76 per cent. of thorium and 12 per cent. of uranium. The unusually large amount of helium evolved from this mineral would indicate that it was formed at an earlier date than the fergusonite previously considered.


270. Possible causes of disintegration. In order to explain the phenomena of radio-activity, it has been supposed that a certain small fraction of the radio-atoms undergoes disintegration per second, but no assumptions have been made as to the cause which produces the instability and consequent disintegration. The instability of the atoms may be supposed to be brought about either by the action of external forces or by that of forces inherent

  1. Ramsay and Travers, Zeitsch. Physik. Chem. 25, p. 568, 1898.
  2. Ramsay, Nature, April 7, 1904.