Page:Radio-activity.djvu/509

From Wikisource
Jump to navigation Jump to search
This page needs to be proofread.

in the atoms themselves. It is conceivable, for example, that the application of some slight external force might cause instability and consequent disintegration, accompanied by the liberation of a large amount of energy, on the same principle that a detonator is necessary to start some explosives. It has been shown that the number of atoms of any radio-active product which break up per second is always proportional to the number present. This law of change does not throw any light on the question, for it would be expected equally on either hypothesis. It has not been found possible to alter the rate of change of any product by the application of any known physical or chemical forces, unless possibly it is assumed that the force of gravitation which is not under our control may influence in some way the stability of the radio-atoms.

It seems likely therefore that the cause of the disruption of the atoms of the radio-elements and their products resides in the atoms themselves. According to the modern views of the constitution of the atom, it is not so much a matter of surprise that some atoms disintegrate as that the atoms of the elements are so permanent as they appear to be. In accordance with the hypothesis of J. J. Thomson, it may be supposed that the atoms consist of a number of small positively and negatively charged particles in rapid internal movement, and held in equilibrium by their mutual forces. In a complex atom, where the possible variations in the relative motion of the parts are very great, the atom may arrive at such a phase that one part acquires sufficient kinetic energy to escape from the system, or that the constraining forces are momentarily neutralised, so that the part escapes from the system with the velocity possessed by it at the instant of its release.

Sir Oliver Lodge[1] has advanced the view that the instability of the atom may be a result of radiation of energy by the atom. Larmor has shown that an electron, subject to acceleration, radiates energy at a rate proportional to the square of its acceleration. An electron moving uniformly in a straight line does not radiate energy, but an electron, constrained to move in a circular orbit with constant velocity, is a powerful radiator, for in such a case the electron is continuously accelerated towards the centre. Lodge considered

  1. Lodge, Nature, June 11, p. 129, 1903.