*2·13. ⊢ . p ∨ ∼ { ∼ ( ∼ p ) } {\displaystyle \scriptstyle {\vdash .p\lor \sim \{\sim (\sim p)\}}}
This proposition is a lemma for *2·14, which, with *2·12, constitutes the principle of double negation.
Dem.
[ Sum ∼ p , ∼ { ∼ ( ∼ p ) } q , r ] ⊢: . ∼ p . ⊃ . ∼ { ∼ ( ∼ p ) } . ⊃: p ∨ ∼ p . ⊃ . p ∨ ∼ { ∼ ( ∼ p ) } ( 1 ) [ ∗ 2 ⋅ 12 ∼ p p ] ⊢:∼ p . ⊃ . ∼ { ∼ ( ∼ p ) } ( 2 ) [ ( 1 ) . ( 2 ) . ∗ 1 ⋅ 11 ] ⊢: p ∨ ∼ p . ⊃ . p ∨ ∼ { ∼ ( ∼ p ) } ( 3 ) [ ( 3 ) . ∗ 2 ⋅ 11. ∗ 1 ⋅ 11 ] ⊢: p ∨ ∼ { ∼ ( ∼ p ) } {\displaystyle {\begin{array}{lll}\scriptstyle {\left[{\text{Sum}}{\frac {\sim p,\sim \{\sim (\sim p)\}}{q,~~~~~~r}}\right]\quad }&\scriptstyle {\vdash :.\sim p.\supset .\sim \{\sim (\sim p)\}.\supset :}&\\&\scriptstyle {\qquad p\lor \sim p.\supset .p\lor \sim \{\sim (\sim p)\}\qquad }&\scriptstyle {(1)}\\\scriptstyle {\left[*2\cdot 12{\frac {\sim p}{p}}\right]}&\scriptstyle {\vdash :\sim p.\supset .\sim \{\sim (\sim p)\}}&\scriptstyle {(2)}\\\scriptstyle {[(1).(2).*1\cdot 11]}&\scriptstyle {\vdash :p\lor \sim p.\supset .p\lor \sim \{\sim (\sim p)\}}&\scriptstyle {(3)}\\\scriptstyle {[(3).*2\cdot 11.*1\cdot 11]}&\scriptstyle {\vdash :p\lor \sim \{\sim (\sim p)\}}&\end{array}}}
*2·14. ⊢ . ∼ ( ∼ p ) ⊃ p {\displaystyle \scriptstyle {\vdash .\sim (\sim p)\supset p}}
[ Perm ∼ { ∼ ( ∼ p ) } q ] ⊢: p ∨ ∼ { ∼ ( ∼ p ) } . ⊃ . ∼ { ∼ ( ∼ p ) } ∨ p ( 1 ) [ ( 1 ) . ∗ 2 ⋅ 13. ∗ 1 ⋅ 11 ] ⊢ . ∼ { ∼ ( ∼ p ) } ∨ p ( 2 ) [ ( 2 ) . ( ∗ 1 ⋅ 01 ) ] ⊢ . ∼ ( ∼ p ) ⊃ p {\displaystyle {\begin{array}{lll}\scriptstyle {\left[{\text{Perm}}{\frac {\sim \{\sim (\sim p)\}}{q}}\right]\quad }&\scriptstyle {\vdash :p\lor \sim \{\sim (\sim p)\}.\supset .\sim \{\sim (\sim p)\}\lor p\qquad }&\scriptstyle {(1)}\\\scriptstyle {[(1).*2\cdot 13.*1\cdot 11]}&\scriptstyle {\vdash .\sim \{\sim (\sim p)\}\lor p}&\scriptstyle {(2)}\\\scriptstyle {[(2).(*1\cdot 01)]}&\scriptstyle {\vdash .\sim (\sim p)\supset p}&\end{array}}}
*2·15 ⊢:∼ p ⊃ q . ⊃ . ∼ q ⊃ p {\displaystyle \scriptstyle {\vdash :\sim p\supset q.\supset .\sim q\supset p}}
[ ∗ 2 ⋅ 05 ∼ p , ∼ ( ∼ q ) p , r ] ⊢: . q ⊃∼ ( ∼ q ) . ⊃:∼ p ⊃ q . ⊃ . ∼ p ⊃∼ ( ∼ q ) ( 1 ) [ ∗ 2 ⋅ 12 q p ] ⊢ . q ⊃∼ ( ∼ q ) ( 2 ) [ ( 1 ) . ( 2 ) . ∗ 1 ⋅ 11 ] ⊢:∼ p ⊃ q . ⊃ . ∼ p ⊃∼ ( ∼ q ) ( 3 ) [ ∗ 2 ⋅ 03 ∼ p , ∼ q p , q ] ⊢:∼ p ⊃∼ ( ∼ q ) . ⊃ . ∼ q ⊃∼ ( ∼ p ) ( 4 ) [ ∗ 2 ⋅ 05 ∼ q , ∼ ( ∼ p ) , p p , q , r ] ⊢: . ∼ ( ∼ p ) ⊃ p . ⊃:∼ q ⊃∼ ( ∼ p ) . ⊃ . ∼ q ⊃ p ( 5 ) [ ( 5 ) . ∗ 2 ⋅ 14. ∗ 1 ⋅ 11 ] ⊢:∼ q ⊃∼ ( ∼ p ) . ⊃ . ∼ q ⊃ p ( 6 ) [ ∗ 2 ⋅ 05 ∼ p ⊃ q , ∼ p ⊃∼ ( ∼ q ) , ∼ q ⊃∼ ( ∼ p ) p , q , r ] ⊢:: ∼ p ⊃∼ ( ∼ q ) . ⊃ . ∼ q ⊃∼ ( ∼ p ) :⊃: . ∼ p ⊃ q . ⊃ . ∼ p ⊃∼ ( ∼ q ) :⊃:∼ p ⊃ q . ⊃ . ∼ q ⊃∼ ( ∼ p ) ( 7 ) [ ( 4 ) . ( 7 ) . ∗ 1 ⋅ 11 ] ⊢: . ∼ p ⊃ q . ⊃ . ∼ p ⊃∼ ( ∼ q ) :⊃: ∼ p ⊃ q . ⊃ . ∼ q ⊃∼ ( ∼ p ) ( 8 ) {\displaystyle {\begin{array}{lll}\scriptstyle {\left[*2\cdot 05{\frac {\sim p,\sim (\sim q)}{p,~~~~~~r}}\right]\quad }&\scriptstyle {\vdash :.q\supset \sim (\sim q).\supset :\sim p\supset q.\supset .\sim p\supset \sim (\sim q)\qquad }&\scriptstyle {~(1)}\\\scriptstyle {\left[*2\cdot 12{\frac {q}{p}}\right]}&\scriptstyle {\vdash .q\supset \sim (\sim q)}&\scriptstyle {~(2)}\\\scriptstyle {[(1).(2).*1\cdot 11]}&\scriptstyle {\vdash :\sim p\supset q.\supset .\sim p\supset \sim (\sim q)}&\scriptstyle {~(3)}\\\scriptstyle {\left[*2\cdot 03{\frac {\sim p,\sim q}{p,~~q}}\right]}&\scriptstyle {\vdash :\sim p\supset \sim (\sim q).\supset .\sim q\supset \sim (\sim p)}&\scriptstyle {~(4)}\\\scriptstyle {\left[*2\cdot 05{\frac {\sim q,\sim (\sim p),p}{p,~~q,~~r}}\right]}&\scriptstyle {\vdash :.\sim (\sim p)\supset p.\supset :\sim q\supset \sim (\sim p).\supset .\sim q\supset p}&\scriptstyle {~(5)}\\\scriptstyle {[(5).*2\cdot 14.*1\cdot 11]}&\scriptstyle {\vdash :\sim q\supset \sim (\sim p).\supset .\sim q\supset p}&\scriptstyle {~(6)}\\\scriptstyle {\left[*2\cdot 05{\frac {\sim p\supset q,\sim p\supset \sim (\sim q),\sim q\supset \sim (\sim p)}{p,~~~~~~q,~~~~~~r}}\right]}&\scriptstyle {\vdash ::}&\\&\scriptstyle {\quad \sim p\supset \sim (\sim q).\supset .\sim q\supset \sim (\sim p):\supset :.}&\\&\scriptstyle {\quad \sim p\supset q.\supset .\sim p\supset \sim (\sim q):\supset :\sim p\supset q.\supset .\sim q\supset \sim (\sim p)}&\scriptstyle {~(7)}\\\scriptstyle {[(4).(7).*1\cdot 11]}&\scriptstyle {\vdash :.\sim p\supset q.\supset .\sim p\supset \sim (\sim q):\supset :}&\\&\scriptstyle {\sim p\supset q.\supset .\sim q\supset \sim (\sim p)}&\scriptstyle {~(8)}\\\end{array}}}