SECTION A ]
IMMEDIATE CONSEQUENCES
107
[
(
3
)
.
(
8
)
.
∗
1
⋅
11
]
⊢:∼
p
⊃
q
.
⊃
.
∼
q
⊃∼
(
∼
p
)
(
9
)
[
∗
2
⋅
05
∼
p
⊃
q
,
∼
q
⊃∼
(
∼
p
)
,
∼
q
⊃
p
p
,
q
,
r
]
⊢::∼
q
⊃∼
(
∼
p
)
.
⊃
.
∼
q
⊃
p
:
⊃:
.
∼
p
⊃
q
.
⊃
.
∼
q
⊃∼
(
∼
p
)
:⊃:∼
p
⊃
q
.
⊃
.
∼
q
⊃
p
(
10
)
[
(
6
)
.
(
10
)
.
∗
1
⋅
11
]
⊢:
.
∼
p
⊃
q
.
⊃
.
∼
q
⊃∼
(
∼
p
)
:⊃:
∼
p
⊃
q
.
⊃
.
∼
q
⊃
p
(
11
)
[
(
9
)
.
(
11
)
.
∗
1
⋅
11
]
⊢:∼
p
⊃
q
.
⊃
.
∼
q
⊃
p
{\displaystyle {\begin{array}{lll}\scriptstyle {[(3).(8).*1\cdot 11]}&\scriptstyle {\vdash :\sim p\supset q.\supset .\sim q\supset \sim (\sim p)}&\scriptstyle {~(9)}\\\scriptstyle {\left[*2\cdot 05{\frac {\sim p\supset q,\sim q\supset \sim (\sim p),\sim q\supset p}{p,\quad ~q,\quad ~r}}\right]}&\scriptstyle {\vdash ::\sim q\supset \sim (\sim p).\supset .\sim q\supset p:}&\\&\scriptstyle {\quad \supset :.\sim p\supset q.\supset .\sim q\supset \sim (\sim p):\supset :\sim p\supset q.\supset .\sim q\supset p}&\scriptstyle {(10)}\\\scriptstyle {[(6).(10).*1\cdot 11]}&\scriptstyle {\vdash :.\sim p\supset q.\supset .\sim q\supset \sim (\sim p):\supset :}&\\&\scriptstyle {\quad \sim p\supset q.\supset .\sim q\supset p}&\scriptstyle {(11)}\\\scriptstyle {[(9).(11).*1\cdot 11]}&\scriptstyle {\vdash :\sim p\supset q.\supset .\sim q\supset p}&\end{array}}}
Note on the proof of *2·15. In the above proof, it will be seen that (3), (4), (6) are respectively of the forms
p
1
⊃
p
2
{\displaystyle \scriptstyle {p_{1}\supset p_{2}}}
,
p
2
⊃
p
3
{\displaystyle \scriptstyle {p_{2}\supset p_{3}}}
,
p
3
⊃
p
4
{\displaystyle \scriptstyle {p_{3}\supset p_{4}}}
, where
p
1
⊃
p
4
{\displaystyle \scriptstyle {p_{1}\supset p_{4}}}
is the proposition to be proved. From
p
1
⊃
p
2
{\displaystyle \scriptstyle {p_{1}\supset p_{2}}}
,
p
2
⊃
p
3
{\displaystyle \scriptstyle {p_{2}\supset p_{3}}}
,
p
3
⊃
p
4
{\displaystyle \scriptstyle {p_{3}\supset p_{4}}}
the proposition
p
1
⊃
p
4
{\displaystyle \scriptstyle {p_{1}\supset p_{4}}}
results by repeated applications of *2·05 or *2·06 (both of which are called "Syll."). It is tedious and unnecessary to repeat this process every time it is used; it will therefore be abbreviated into
"
[
Syll
]
⊢
.
(
a
)
.
(
b
)
.
(
c
)
.
⊃⊢
.
(
d
)
{\displaystyle \scriptstyle {[{\text{Syll}}]~\vdash .(a).(b).(c).\supset \vdash .(d)}}
,"
where
(
a
)
{\displaystyle \scriptstyle {(a)}}
is of the form
p
1
⊃
p
2
{\displaystyle \scriptstyle {p_{1}\supset p_{2}}}
,
(
b
)
{\displaystyle \scriptstyle {(b)}}
of the form
p
2
⊃
p
3
{\displaystyle \scriptstyle {p_{2}\supset p_{3}}}
,
(
c
)
{\displaystyle \scriptstyle {(c)}}
of the form
p
3
⊃
p
4
{\displaystyle \scriptstyle {p_{3}\supset p_{4}}}
, and
(
d
)
{\displaystyle \scriptstyle {(d)}}
of the form
p
1
⊃
p
4
{\displaystyle \scriptstyle {p_{1}\supset p_{4}}}
. The same abbreviation will be applied to a sorites of any length.
Also where we have "
⊢
.
p
1
{\displaystyle \scriptstyle {\vdash .p_{1}}}
" and "
⊢
.
p
1
⊃
p
2
{\displaystyle \scriptstyle {\vdash .p_{1}\supset p_{2}}}
," and
p
2
{\displaystyle \scriptstyle {p_{2}}}
is the proposition to be proved, it is convenient to write simply
"
⊢
.
p
1
.
⊃
{\displaystyle \scriptstyle {\vdash .p_{1}.\supset }}
[etc.]
⊢
.
p
2
{\displaystyle \scriptstyle {\vdash .p_{2}}}
,"
where "etc." will be a reference to the previous propositions in virtue of which the implication "
p
1
⊃
p
2
{\displaystyle \scriptstyle {p_{1}\supset p_{2}}}
" holds. This form embodies the use of *1·11 or *1·1 , and makes many proofs at once shorter and easier to follow. It is used in the first two lines of the following proof.
*2·16.
⊢:
p
⊃
q
.
⊃
.
∼
q
⊃∼
p
{\displaystyle \scriptstyle {\vdash :p\supset q.\supset .\sim q\supset \sim p}}
Dem.
[
∗
2
⋅
12
]
⊢
.
q
⊃∼
(
∼
q
)
.
⊃
[
∗
2
⋅
05
]
⊢:
p
⊃
q
.
⊃
.
p
⊃∼
(
∼
q
)
(
1
)
[
∗
2
⋅
03
∼
q
q
]
⊢:
p
⊃∼
(
∼
q
)
.
⊃
.
∼
q
⊃∼
p
(
2
)
[
Syll
]
⊢
.
(
1
)
.
(
2
)
.
⊃⊢:
p
⊃
q
.
⊃
.
∼
q
⊃∼
p
{\displaystyle {\begin{array}{lll}\scriptstyle {[*2\cdot 12]\quad }&\scriptstyle {\vdash .q\supset \sim (\sim q).\supset }&\\\scriptstyle {[*2\cdot 05]}&\scriptstyle {\vdash :p\supset q.\supset .p\supset \sim (\sim q)}&\scriptstyle {(1)}\\\scriptstyle {\left[*2\cdot 03{\frac {\sim q}{q}}\right]}&\scriptstyle {\vdash :p\supset \sim (\sim q).\supset .\sim q\supset \sim p}&\scriptstyle {(2)}\\\scriptstyle {[{\text{Syll}}]}&\scriptstyle {\vdash .(1).(2).\supset \vdash :p\supset q.\supset .\sim q\supset \sim p}&\end{array}}}