108
MATHEMATICAL LOGIC
[PART I
Note. The proposition to be proved will be called "
Prop
{\displaystyle \scriptstyle {\text{Prop}}}
," and when a proof ends, like that of *2·16 , by an implication between asserted propositions, of which the consequent is the proposition to be proved, we shall write "
⊢
.
etc.
⊃⊢
.
Prop
{\displaystyle \scriptstyle {\vdash .{\text{etc.}}\supset \vdash .{\text{Prop}}}}
". Thus "
⊃⊢
.
Prop
{\displaystyle \scriptstyle {\supset \vdash .{\text{Prop}}}}
" ends a proof, and more or less corresponds to "q.e.d."
*2·17.
⊢:∼
q
⊃∼
p
.
⊃
.
p
⊃
q
{\displaystyle \scriptstyle {\vdash :\sim q\supset \sim p.\supset .p\supset q}}
Dem.
[
∗
2
⋅
03
∼
q
,
p
p
,
q
]
⊢:∼
q
⊃∼
p
.
⊃
.
p
⊃∼
(
∼
q
)
(
1
)
[
∗
2
⋅
14
]
⊢:∼
(
∼
q
)
⊃
q
:⊃
[
∗
2
⋅
05
]
⊢:
p
⊃∼
(
∼
q
)
.
⊃
.
p
⊃
q
(
2
)
[
Syll
]
⊢
.
(
1
)
.
(
2
)
.
⊃⊢
.
Prop
{\displaystyle {\begin{array}{lll}\scriptstyle {\left[*2\cdot 03{\frac {\sim q,p}{p,~q}}\right]\quad }&\scriptstyle {\vdash :\sim q\supset \sim p.\supset .p\supset \sim (\sim q)\qquad \qquad }&\scriptstyle {(1)}\\\scriptstyle {[*2\cdot 14]\quad }&\scriptstyle {\vdash :\sim (\sim q)\supset q:\supset }&\\\scriptstyle {[*2\cdot 05]\quad }&\scriptstyle {\vdash :p\supset \sim (\sim q).\supset .p\supset q\qquad \qquad }&\scriptstyle {(2)}\\\scriptstyle {[{\text{Syll}}]\quad }&\scriptstyle {\vdash .(1).(2).\supset \vdash .{\text{Prop}}}\end{array}}}
2·15, *2·16 and *2·17 are forms of the principle of transposition, and will be all referred to as "Transp."
*2·18.
⊢:∼
p
⊃
p
.
⊃
.
p
{\displaystyle \scriptstyle {\vdash :\sim p\supset p.\supset .p}}
Dem.
[
∗
2
⋅
12
]
⊢
.
p
⊃∼
(
∼
p
)
.
⊃
[
∗
2
⋅
05
]
⊢
.
∼
p
⊃
p
.
⊃
.
∼
p
⊃∼
(
∼
p
)
(
1
)
[
∗
2
⋅
01
∼
p
p
]
⊢:∼
p
⊃∼
(
∼
p
)
.
⊃
.
∼
(
∼
p
)
(
2
)
[
Syll
]
⊢
.
(
1
)
.
(
2
)
.
⊃⊢:∼
p
⊃
p
.
⊃
.
∼
(
∼
p
)
(
3
)
[
∗
2
⋅
14
]
⊢
.
∼
(
∼
p
)
⊃
p
(
4
)
[
Syll
]
⊢
.
(
3
)
.
(
4
)
.
⊃⊢
.
Prop
{\displaystyle {\begin{array}{lll}\scriptstyle {[*2\cdot 12]\quad }&\scriptstyle {\vdash .p\supset \sim (\sim p).\supset }\\\scriptstyle {[*2\cdot 05]\quad }&\scriptstyle {\vdash .\sim p\supset p.\supset .\sim p\supset \sim (\sim p)\qquad \qquad }&\scriptstyle {(1)}\\\scriptstyle {\left[*2\cdot 01{\frac {\sim p}{p}}\right]\quad }&\scriptstyle {\vdash :\sim p\supset \sim (\sim p).\supset .\sim (\sim p)\qquad \qquad }&\scriptstyle {(2)}\\\scriptstyle {[{\text{Syll}}]\quad }&\scriptstyle {\vdash .(1).(2).\supset \vdash :\sim p\supset p.\supset .\sim (\sim p)\qquad \qquad }&\scriptstyle {(3)}\\\scriptstyle {[*2\cdot 14]\quad }&\scriptstyle {\vdash .\sim (\sim p)\supset p\qquad \qquad }&\scriptstyle {(4)}\\\scriptstyle {[{\text{Syll}}]\quad }&\scriptstyle {\vdash .(3).(4).\supset \vdash .{\text{Prop}}}\end{array}}}
This is the complement of the principle of the reductio ad absurdum. It states that a proposition which follows from the hypothesis of its own falsehood is true.
*2·2.
⊢:
p
.
⊃
.
p
∨
q
{\displaystyle \scriptstyle {\vdash :p.\supset .p\lor q}}
Dem.
⊢
.
Add
.
⊃⊢:
p
.
⊃
.
q
∨
p
(
1
)
[
Perm
]
⊢:
q
∨
p
.
⊃
.
p
∨
q
(
2
)
[
Syll
]
⊢
.
(
1
)
.
(
2
)
.
⊃⊢
.
Prop
{\displaystyle {\begin{array}{ll}\scriptstyle {\vdash .{\text{Add}}.\supset \vdash :p.\supset .q\lor p\qquad \qquad }&\scriptstyle {(1)}\\\scriptstyle {[{\text{Perm}}]\vdash :q\lor p.\supset .p\lor q\qquad \qquad }&\scriptstyle {(2)}\\\scriptstyle {[{\text{Syll}}]~~\vdash .(1).(2).\supset \vdash .{\text{Prop}}}\end{array}}}
*2·21.
⊢:∼
p
.
⊃
.
p
⊃
q
[
∗
2
⋅
2
∼
p
p
]
{\displaystyle \scriptstyle {\vdash :\sim p.\supset .p\supset q\quad \left[*2\cdot 2{\frac {\sim p}{p}}\right]}}
The above two propositions are very frequently used.
*2·24.
⊢:
p
.
⊃
.
∼
p
⊃
q
[
∗
2
⋅
21.
Comm
]
{\displaystyle \scriptstyle {\vdash :p.\supset .\sim p\supset q\quad [*2\cdot 21.{\text{Comm}}]}}