116
MATHEMATICAL LOGIC
[PART I
*3·45.
⊢:
.
p
⊃
q
.
⊃:
p
.
r
.
⊃
.
q
.
r
{\displaystyle \scriptstyle {\vdash :.p\supset q.\supset :p.r.\supset .q.r}}
I.e. both sides of an implication may be multiplied by a common factor. This is called by Peano the "principle of the factor." It will be referred to as "Fact."
*3·47.
⊢:
.
p
⊃
r
.
q
⊃
s
.
⊃:
p
.
q
.
⊃
.
r
.
s
{\displaystyle \scriptstyle {\vdash :.p\supset r.q\supset s.\supset :p.q.\supset .r.s}}
I.e. if
p
{\displaystyle \scriptstyle {p}}
implies
q
{\displaystyle \scriptstyle {q}}
and
r
{\displaystyle \scriptstyle {r}}
implies
s
{\displaystyle \scriptstyle {s}}
, then
p
{\displaystyle \scriptstyle {p}}
and
q
{\displaystyle \scriptstyle {q}}
jointly imply
r
{\displaystyle \scriptstyle {r}}
and
s
{\displaystyle \scriptstyle {s}}
jointly. The law of contradiction, "
⊢
.
∼
(
p
.
∼
p
)
{\displaystyle \scriptstyle {\vdash .\sim (p.\sim p)}}
," is proved in this number (*3·24 ); but in spite of its fame we have found few occasions for its use.
*3·01.
p
.
q
.
=
.
∼
(
∼
p
∨
∼
q
)
Df
{\displaystyle \scriptstyle {p.q.=.\sim (\sim p\lor \sim q)\quad {\text{Df}}}}
*3·02.
p
⊃
q
⊃
r
.
=
.
p
⊃
q
.
q
⊃
r
Df
{\displaystyle \scriptstyle {p\supset q\supset r.=.p\supset q.q\supset r\quad {\text{Df}}}}
*3·03. Given two asserted elementary propositional functions "
⊢
.
ϕ
p
{\displaystyle \scriptstyle {\vdash .\phi p}}
" and "
⊢
.
ψ
p
{\displaystyle \scriptstyle {\vdash .\psi p}}
" whose arguments are elementary propositions, we have
⊢
.
ϕ
p
.
ψ
p
{\displaystyle \scriptstyle {\vdash .\phi p.\psi p}}
.
Dem.
⊢
.
∗
1
⋅
7
⋅
72.
∗
2
⋅
11.
⊃⊢:∼
ϕ
p
∨
∼
ψ
p
.
∨
∼
(
∼
ϕ
p
∨
∼
ψ
p
)
(
1
)
⊢
.
(
1
)
.
∗
2
⋅
32.
(
∗
1
⋅
01
)
.
⊃⊢:
.
ϕ
p
.
⊃:
ψ
p
.
⊃
.
∼
(
∼
ϕ
p
∨
∼
ψ
p
)
(
2
)
⊢
.
(
2
)
.
(
∗
3
⋅
03
)
.
⊃⊢:
.
ϕ
p
.
⊃:
ψ
p
.
⊃
.
ϕ
p
.
ψ
p
(
3
)
⊢
.
(
3
)
.
∗
1
⋅
11.
⊃⊢
.
Prop
{\displaystyle {\begin{array}{lr}\scriptstyle {\vdash .*1\cdot 7\cdot 72.*2\cdot 11.\supset \vdash :\sim \phi p\lor \sim \psi p.\lor \sim (\sim \phi p\lor \sim \psi p)\quad }&\scriptstyle {(1)}\\\scriptstyle {\vdash .(1).*2\cdot 32.(*1\cdot 01).\supset \vdash :.\phi p.\supset :\psi p.\supset .\sim (\sim \phi p\lor \sim \psi p)}&\scriptstyle {(2)}\\\scriptstyle {\vdash .(2).(*3\cdot 03).\supset \vdash :.\phi p.\supset :\psi p.\supset .\phi p.\psi p}&\scriptstyle {(3)}\\\scriptstyle {\vdash .(3).*1\cdot 11.\supset \vdash .{\text{Prop}}}\end{array}}}
*3·1.
⊢:
p
.
q
.
⊃
.
∼
(
∼
p
∨
∼
q
)
[
Id
.
(
∗
3
⋅
01
)
]
{\displaystyle \scriptstyle {\vdash :p.q.\supset .\sim (\sim p\lor \sim q)\quad [{\text{Id}}.(*3\cdot 01)]}}
*3·11.
⊢:∼
(
∼
p
∨
∼
q
)
.
⊃
.
p
.
q
[
Id
.
(
∗
3
⋅
01
)
]
{\displaystyle \scriptstyle {\vdash :\sim (\sim p\lor \sim q).\supset .p.q\quad [{\text{Id}}.(*3\cdot 01)]}}
*3·12.
⊢:∼
p
.
∨
.
∼
q
.
∨
.
p
.
q
[
∗
2
⋅
11
∼
p
∨
∼
q
p
]
{\displaystyle \scriptstyle {\vdash :\sim p.\lor .\sim q.\lor .p.q\quad \left[*2\cdot 11{\frac {\sim p\lor \sim q}{p}}\right]}}
*3·13.
⊢:∼
(
p
.
q
)
.
⊃
.
∼
p
∨
∼
q
[
∗
3
⋅
11.
Transp
]
{\displaystyle \scriptstyle {\vdash :\sim (p.q).\supset .\sim p\lor \sim q\quad [*3\cdot 11.{\text{Transp}}]}}
*3·14.
⊢:∼
p
∨
∼
q
.
⊃
.
∼
(
p
.
q
)
[
∗
3
⋅
1.
Transp
]
{\displaystyle \scriptstyle {\vdash :\sim p\lor \sim q.\supset .\sim (p.q)\quad [*3\cdot 1.{\text{Transp}}]}}
*3·2.
⊢:
.
p
.
⊃:
q
.
⊃
.
p
.
q
[
∗
3
⋅
12
]
{\displaystyle \scriptstyle {\vdash :.p.\supset :q.\supset .p.q\qquad [*3\cdot 12]}}
*3·21.
⊢:
.
q
.
⊃:
p
.
⊃
.
p
.
q
[
∗
3
⋅
2.
Comm
]
{\displaystyle \scriptstyle {\vdash :.q.\supset :p.\supset .p.q\qquad [*3\cdot 2.{\text{Comm}}]}}
*3·22.
⊢:
p
.
q
.
⊃
.
q
.
p
{\displaystyle \scriptstyle {\vdash :p.q.\supset .q.p}}
This is one form of the commutative law for logical multiplication, A more complete form is given in *4·3.
Dem.
[
∗
3
⋅
13
q
,
p
p
,
q
]
⊢:∼
(
q
.
p
)
.
⊃
.
∼
q
∨
∼
p
.
[
Perm
]
⊃
.
∼
p
∨
∼
q
.
[
∗
3
⋅
14
]
⊃
.
∼
(
p
.
q
)
(
1
)
⊢
.
(
1
)
.
Transp
.
⊃⊢
.
Prop
{\displaystyle {\begin{array}{ll}\scriptstyle {\left[*3\cdot 13{\frac {q,p}{p,q}}\right]\quad \vdash :\sim (q.p).}&\scriptstyle {\supset .\sim q\lor \sim p.}\\\scriptstyle {[{\text{Perm}}]}&\scriptstyle {\supset .\sim p\lor \sim q.}\\\scriptstyle {[*3\cdot 14]}&\scriptstyle {\supset .\sim (p.q)\qquad \qquad (1)}\\\scriptstyle {\vdash .(1).{\text{Transp}}.\supset \vdash .{\text{Prop}}}\end{array}}}