118
MATHEMATICAL LOGIC
[PART I
*3·33.
⊢:
p
⊃
q
.
q
⊃
r
.
⊃
.
p
⊃
r
[
Syll
.
Imp
]
{\displaystyle \scriptstyle {\vdash :p\supset q.q\supset r.\supset .p\supset r\quad [{\text{Syll}}.{\text{Imp}}]}}
*3·34.
⊢:
q
⊃
r
.
p
⊃
q
.
⊃
.
p
⊃
r
Syll
.
Imp
]
{\displaystyle \scriptstyle {\vdash :q\supset r.p\supset q.\supset .p\supset r\quad {\text{Syll}}.{\text{Imp}}]}}
These two propositions will hereafter be referred to as "Syll"; they are usually more convenient than either *2·05 or *2·06 .
*3·35.
⊢:
p
.
p
⊃
q
.
⊃
.
q
[
∗
2
⋅
27.
Imp
]
{\displaystyle \scriptstyle {\vdash :p.p\supset q.\supset .q\quad [*2\cdot 27.{\text{Imp}}]}}
*3·37.
⊢:
.
p
.
q
.
⊃
.
r
:⊃:
p
.
∼
r
.
⊃
.
∼
q
{\displaystyle \scriptstyle {\vdash :.p.q.\supset .r:\supset :p.\sim r.\supset .\sim q}}
Dem.
⊢
.
Transp
.
⊃⊢:
q
⊃
r
.
⊃
.
∼
r
⊃∼
q
:
[
Syll
]
⊃⊢:
.
p
.
⊃
.
q
⊃
r
:⊃:
p
.
⊃
.
∼
r
⊃∼
q
(
1
)
⊢
.
Exp
.
⊃⊢:
.
p
.
q
.
⊃
.
r
:⊃:
p
.
⊃
.
q
⊃
r
(
2
)
⊢
.
Imp
.
⊃⊢:
.
p
.
⊃
.
∼
r
⊃∼
q
:⊃:
p
.
∼
r
.
⊃
.
∼
q
(
3
)
⊢
.
(
2
)
.
(
1
)
.
(
3
)
.
Syll
.
⊃⊢
.
Prop
{\displaystyle {\begin{array}{llr}\scriptstyle {\vdash .{\text{Transp}}.}&\scriptstyle {\supset \vdash :q\supset r.\supset .\sim r\supset \sim q:}\\\scriptstyle {[{\text{Syll}}]}&\scriptstyle {\supset \vdash :.p.\supset .q\supset r:\supset :p.\supset .\sim r\supset \sim q\qquad }&\scriptstyle {(1)}\\\scriptstyle {\vdash .{\text{Exp}}.}&\scriptstyle {\supset \vdash :.p.q.\supset .r:\supset :p.\supset .q\supset r}&\scriptstyle {(2)}\\\scriptstyle {\vdash .{\text{Imp}}.}&\scriptstyle {\supset \vdash :.p.\supset .\sim r\supset \sim q:\supset :p.\sim r.\supset .\sim q}&\scriptstyle {(3)}\\\scriptstyle {\vdash .(2).(1).}&\scriptstyle {(3).{\text{Syll}}.\supset \vdash .{\text{Prop}}}\end{array}}}
This is another form of transposition.
*3·4.
⊢:
p
.
q
.
⊃
.
p
⊃
q
[
∗
2
⋅
51.
Transp
.
(
∗
1
⋅
01.
∗
3
⋅
01
)
]
{\displaystyle \scriptstyle {\vdash :p.q.\supset .p\supset q\qquad [*2\cdot 51.{\text{Transp}}.(*1\cdot 01.*3\cdot 01)]}}
*3·41.
⊢:
.
p
⊃
r
.
⊃:
p
.
q
.
⊃
.
r
[
∗
3
⋅
26.
Syll
]
{\displaystyle \scriptstyle {\vdash :.p\supset r.\supset :p.q.\supset .r\quad [*3\cdot 26.{\text{Syll}}]}}
*3·42.
⊢:
.
q
⊃
r
.
⊃:
p
.
q
.
⊃
.
r
[
∗
3
⋅
27.
Syll
]
{\displaystyle \scriptstyle {\vdash :.q\supset r.\supset :p.q.\supset .r\quad [*3\cdot 27.{\text{Syll}}]}}
*3·43.
⊢:
.
p
⊃
q
.
p
⊃
r
.
⊃:
p
.
⊃
.
q
.
r
{\displaystyle \scriptstyle {\vdash :.p\supset q.p\supset r.\supset :p.\supset .q.r}}
Dem.
⊢
.
∗
3
⋅
2.
⊃⊢:
.
q
.
⊃:
r
.
⊃
.
q
.
r
(
1
)
⊢
.
(
1
)
.
Syll
.
⊃⊢::
p
⊃
q
.
⊃:
.
p
.
⊃:
r
.
⊃
.
q
.
r
:
.
[
∗
2
⋅
77
]
⊃:
.
p
⊃
r
.
⊃:
p
.
⊃
.
q
.
r
(
2
)
⊢
.
(
2
)
.
Imp
.
⊃⊢
.
Prop
{\displaystyle {\begin{array}{llr}\scriptstyle {\vdash .*3\cdot 2.\supset \vdash :.q.\supset :r.\supset }&\scriptstyle {.q.r}&\scriptstyle {(1)}\\\scriptstyle {\vdash .(1).{\text{Syll}}.\supset \vdash ::p\supset q.}&\scriptstyle {\supset :.p.\supset :r.\supset .q.r:.}\\\scriptstyle {[*2\cdot 77]}&\scriptstyle {\supset :.p\supset r.\supset :p.\supset .q.r\qquad }&\scriptstyle {(2)}\\\scriptstyle {\vdash .(2).{\text{Imp}}.\supset \vdash .{\text{Prop}}}\end{array}}}
*3·44.
⊢:
.
q
⊃
p
.
r
⊃
p
.
⊃:
q
∨
r
.
⊃
.
p
{\displaystyle \scriptstyle {\vdash :.q\supset p.r\supset p.\supset :q\lor r.\supset .p}}
This principle is analogous to *3·43. The analogy between *3·43 and *3·44 is of a sort which generally subsists between formulae concerning products and formulae concerning sums.
Dem.
⊢
.
Syll
.
⊃⊢:
.
∼
q
⊃
r
.
r
⊃
p
.
⊃:∼
q
⊃
p
:
[
∗
2
⋅
6
]
⊃:
q
⊃
p
.
⊃
.
p
(
1
)
⊢
.
(
1
)
.
Exp
.
⊃⊢::∼
q
⊃
r
.
⊃:
.
r
⊃
p
.
⊃:
q
⊃
p
.
⊃
.
p
:
.
[
Comm
.
Imp
]
⊃:
.
q
⊃
p
.
r
⊃
p
.
⊃
.
p
(
2
)
⊢
.
(
2
)
.
Comm
.
⊃⊢:
.
q
⊃
p
.
r
⊃
p
.
⊃:∼
q
⊃
r
.
⊃
.
p
:
.
[
∗
2
⋅
53.
Syll
]
⊃⊢
.
Prop
{\displaystyle {\begin{array}{llr}\scriptstyle {\vdash .{\text{Syll}}.\supset \vdash :.\sim q\supset r.r\supset p}&\scriptstyle {.\supset :\sim q\supset p:}\\\scriptstyle {[*2\cdot 6]}&\scriptstyle {~\supset :q\supset p.\supset .p}&\scriptstyle {(1)}\\\scriptstyle {\vdash .(1).{\text{Exp}}.\supset \vdash ::\sim q\supset r.}&\scriptstyle {\supset :.r\supset p.\supset :q\supset p.\supset .p:.}\\\scriptstyle {[{\text{Comm}}.{\text{Imp}}]}&\scriptstyle {\supset :.q\supset p.r\supset p.\supset .p\qquad }&\scriptstyle {(2)}\\\scriptstyle {\vdash .(2).{\text{Comm}}.\supset \vdash :.q\supset p.}&\scriptstyle {r\supset p.\supset :\sim q\supset r.\supset .p:.}\\\scriptstyle {[*2\cdot 53.{\text{Syll}}]\quad \supset \vdash .{\text{Prop}}}\end{array}}}