SECTION A ]
THE LOGICAL PRODUCT OF TWO PROPOSITIONS
119
*3·45.
⊢:
.
p
⊃
q
.
⊃:
p
.
r
.
⊃
.
q
.
r
{\displaystyle \scriptstyle {\vdash :.p\supset q.\supset :p.r.\supset .q.r}}
This principle shows that we may multiply both sides of an implication by a common factor; hence it is called by Peano the "principle of the factor." We shall refer to it as "Fact." It is the analogue, for multiplication, of the primitive proposition *1·6 .
Dem.
⊢
.
Syll
∼
r
r
.
⊃⊢:
.
p
⊃
q
.
⊃:
q
⊃∼
r
.
⊃
.
p
⊃∼
r
:
[
Transp
]
⊃:∼
(
p
⊃∼
r
)
.
⊃
.
∼
(
q
⊃∼
r
)
:
.
[
Id
.
(
∗
1
⋅
01.
∗
3
⋅
01
)
]
⊃⊢
.
Prop
{\displaystyle {\begin{aligned}&{\begin{array}{ll}\scriptstyle {\vdash .{\text{Syll}}{\frac {\sim r}{r}}.\supset \vdash :.p\supset q.}&\scriptstyle {\supset :q\supset \sim r.\supset .p\supset \sim r:}\\\scriptstyle {[{\text{Transp}}]}&\scriptstyle {\supset :\sim (p\supset \sim r).\supset .\sim (q\supset \sim r):.}\end{array}}\\&\scriptstyle {~[{\text{Id}}.(*1\cdot 01.*3\cdot 01)]\supset \vdash .{\text{Prop}}}\end{aligned}}}
*3·47.
⊢:
.
p
⊃
r
.
q
⊃
s
.
⊃:
p
.
q
.
⊃
.
r
.
s
{\displaystyle \scriptstyle {\vdash :.p\supset r.q\supset s.\supset :p.q.\supset .r.s}}
This proposition, or rather its analogue for classes, was proved by Leibniz, and evidently pleased him, since he calls it "præclarum theorema[ 1] ."
Dem.
⊢
.
∗
3
⋅
26.
⊃⊢:
.
p
⊃
r
.
q
⊃
s
.
⊃:
p
⊃
r
:
[
Fact
]
⊃:
p
.
q
.
⊃
.
r
.
q
:
[
∗
3
⋅
22
]
⊃:
p
.
q
.
⊃
.
q
.
r
(
1
)
⊢
.
∗
3
⋅
27.
⊃⊢:
.
p
⊃
r
.
q
⊃
s
.
⊃:
q
⊃
s
:
[
Fact
]
⊃:
q
.
r
.
⊃
.
s
.
r
:
[
∗
3
⋅
22
]
⊃:
q
.
r
.
⊃
.
r
.
s
(
2
)
⊢
.
(
1
)
.
(
2
)
.
∗
3
⋅
03.
∗
2
⋅
83.
⊃
⊢:
.
p
⊃
r
.
q
⊃
s
.
⊃:
p
.
q
.
⊃
.
r
.
s
:
.
⊃⊢
.
Prop
{\displaystyle {\begin{aligned}&{\begin{array}{llr}\scriptstyle {\vdash .*3\cdot 26.\supset \vdash :.p\supset r.q\supset s.}&\scriptstyle {\supset :p\supset r:}\\\scriptstyle {[{\text{Fact}}]}&\scriptstyle {\supset :p.q.\supset .r.q:}\\\scriptstyle {[*3\cdot 22]}&\scriptstyle {\supset :p.q.\supset .q.r\qquad \qquad }&\scriptstyle {(1)}\\\scriptstyle {\vdash .*3\cdot 27.\supset \vdash :.p\supset r.q\supset s.}&\scriptstyle {\supset :q\supset s:}\\\scriptstyle {[{\text{Fact}}]}&\scriptstyle {\supset :q.r.\supset .s.r:}\\\scriptstyle {[*3\cdot 22]}&\scriptstyle {\supset :q.r.\supset .r.s}&\scriptstyle {(2)}\end{array}}\\&\scriptstyle {~\vdash .(1).(2).*3\cdot 03.*2\cdot 83.\supset }\\&\scriptstyle {\qquad \qquad \vdash :.p\supset r.q\supset s.\supset :p.q.\supset .r.s:.\supset \vdash .{\text{Prop}}}\end{aligned}}}
*3·48.
⊢:
.
p
⊃
r
.
q
⊃
s
.
⊃:
p
∨
q
.
⊃
.
r
∨
s
{\displaystyle \scriptstyle {\vdash :.p\supset r.q\supset s.\supset :p\lor q.\supset .r\lor s}}
This theorem is the analogue of *3·47.
Dem.
⊢
.
∗
3
⋅
26.
⊃⊢:
.
p
⊃
r
.
q
⊃
s
.
⊃:
p
⊃
r
:
[
Sum
]
⊃:
p
∨
q
.
⊃
.
r
∨
q
:
[
Perm
]
⊃:
p
∨
q
.
⊃
.
q
∨
r
(
1
)
⊢
.
∗
3
⋅
27.
⊃⊢:
.
p
⊃
r
.
q
⊃
s
.
⊃:
q
⊃
s
:
[
Sum
]
⊃:
q
∨
r
.
⊃
.
s
∨
r
:
[
Perm
]
⊃:
q
∨
r
.
⊃
.
r
∨
s
(
2
)
⊢
.
(
1
)
.
(
2
)
.
∗
2
⋅
83.
⊃
⊢:
.
p
⊃
r
.
q
⊃
s
.
⊃:
p
∨
q
.
⊃
.
r
∨
s
:
.
⊃⊢
.
Prop
{\displaystyle {\begin{aligned}&{\begin{array}{llr}\scriptstyle {\vdash .*3\cdot 26.\supset \vdash :.p\supset r.q\supset s.}&\scriptstyle {\supset :p\supset r:}\\\scriptstyle {[{\text{Sum}}]}&\scriptstyle {\supset :p\lor q.\supset .r\lor q:}\\\scriptstyle {[{\text{Perm}}]}&\scriptstyle {\supset :p\lor q.\supset .q\lor r\qquad \qquad }&\scriptstyle {(1)}\\\scriptstyle {\vdash .*3\cdot 27.\supset \vdash :.p\supset r.q\supset s.}&\scriptstyle {\supset :q\supset s:}\\\scriptstyle {[{\text{Sum}}]}&\scriptstyle {\supset :q\lor r.\supset .s\lor r:}\\\scriptstyle {[{\text{Perm}}]}&\scriptstyle {\supset :q\lor r.\supset .r\lor s}&\scriptstyle {(2)}\end{array}}\\&\scriptstyle {~\vdash .(1).(2).*2\cdot 83.\supset }\\&\scriptstyle {\qquad \qquad \vdash :.p\supset r.q\supset s.\supset :p\lor q.\supset .r\lor s:.\supset \vdash .{\text{Prop}}}\end{aligned}}}
↑ Philosophical works , Gerhardt's edition, Vol. vii . p. 223.