Jump to content

Page:ScienceAndHypothesis1905.djvu/157

From Wikisource
This page has been validated.
ENERGY AND THERMO-DYNAMICS.
125

be potential energy; the second, which I shall call T, will be kinetic energy. It is true that if T + U is constant, so is any function of T + U, φ (T + U). But this function φ (T + U) will not be the sum of two terms, the one independent of the velocities, and the other proportional to the square of the velocities. Among the functions which remain constant there is only one which enjoys this property. It is T + U (or a linear function of T + U), it matters not which, since this linear function may always be reduced to T + U by a change of unit and of origin. This, then, is what we call energy. The first term we shall call potential energy, and the second kinetic energy. The definition of the two kinds of energy may therefore be carried through without any ambiguity.

So it is with the definition of mass. Kinetic energy, or vis viva, is expressed very simply by the aid of the masses, and of the relative velocities of all the material points with reference to one of them. These relative velocities may be observed, and when we have the expression of the kinetic energy as a function of these relative velocities, the coefficients of this expression will give us the masses. So in this simple case the fundamental ideas can be defined without difficulty. But the difficulties reappear in the more complicated cases if the forces, instead of depending solely on the distances, depend also on the velocities. For example, Weber supposes the mutual action of two electric molecules to depend not only on their