distance but on their velocity and on their acceleration. If material points attracted each other according to an analogous law, U would depend on the velocity, and it might contain a term proportional to the square of the velocity. How can we detect among such terms those that arise from T or U? and how, therefore, can we distinguish the two parts of the energy? But there is more than this. How can we define energy itself? We have no more reason to take as our definition T + U rather than any other function of T + U, when the property which characterised T + U has disappeared—namely, that of being the sum of two terms of a particular form. But that is not all. We must take account, not only of mechanical energy properly so called, but of the other forms of energy—heat, chemical energy, electrical energy, etc. The principle of the conservation of energy must be written T + U + Q = a constant, where T is the sensible kinetic energy, U the potential energy of position, depending only on the position of the bodies, Q the internal molecular energy under the thermal, chemical, or electrical form. This would be all right if the three terms were absolutely distinct; if T were proportional to the square of the velocities, U independent of these velocities and of the state of the bodies, Q independent of the velocities and of the positions of the bodies, and depending only on their internal state. The expression for the energy could be decomposed in one way only into three