the equality (2) are merely more complicated combinations than the two sides of the equality (1), and analysis only serves to separate the elements which enter into these combinations and to study their relations.
Mathematicians therefore proceed "by construction," they "construct" more complicated combinations. When they analyse these combinations, these aggregates, so to speak, into their primitive elements, they see the relations of the elements and deduce the relations of the aggregates themselves. The process is purely analytical, but it is not a passing from the general to the particular, for the aggregates obviously cannot be regarded as more particular than their elements.
Great importance has been rightly attached to this process of "construction," and some claim to see in it the necessary and sufficient condition of the progress of the exact sciences. Necessary, no doubt, but not sufficient! For a construction to be useful and not mere waste of mental effort, for it to serve as a stepping-stone to higher things, it must first of all possess a kind of unity enabling us to see something more than the juxtaposition of its elements. Or more accurately, there must be some advantage in considering the construction rather than the elements themselves. What can this advantage be? Why reason on a polygon, for instance, which is always decomposable into triangles, and not on elementary triangles? It is because there are properties of