Page:ScienceAndHypothesis1905.djvu/48

From Wikisource
Jump to navigation Jump to search
This page has been validated.

polygons of any number of sides, and they can be immediately applied to any particular kind of polygon. In most cases it is only after long efforts that those properties can be discovered, by directly studying the relations of elementary triangles. If the quadrilateral is anything more than the juxtaposition of two triangles, it is because it is of the polygon type.

A construction only becomes interesting when it can be placed side by side with other analogous constructions for forming species of the same genus. To do this we must necessarily go back from the particular to the general, ascending one or more steps. The analytical process "by construction" does not compel us to descend, but it leaves us at the same level. We can only ascend by mathematical induction, for from it alone can we learn something new. Without the aid of this induction, which in certain respects differs from, but is as fruitful as, physical induction, construction would be powerless to create science.

Let me observe, in conclusion, that this induction is only possible if the same operation can be repeated indefinitely. That is why the theory of chess can never become a science, for the different moves of the same piece are limited and do not resemble each other.