Jump to content

Page:StokesAberration1846.djvu/4

From Wikisource
This page has been validated.

Theory of the Aberration of Light.

Draw perpendicular to the plane , and in the direction of the resolved part of the velocity of the æther, and

Fig. 1.

in the opposite direction; and take

, and ,

and join with and . Then will be the directions of the incident, reflected and refracted rays. Draw perpendicular to , and join . Then will be the inclinations of the planes to the plane . Now

and ; therefore , and therefore the refracted ray lies in the plane of incidence . It is easy to see that the same is true of the reflected ray . Also ; and the angles are sensibly equal to respectively, and we therefore have without sensible error, . Hence the laws of reflexion and refraction are not sensibly affected by the velocity .

Let us now consider the effect of the velocity . As far as depends on this velocity, the incident, reflected and refracted rays will all be in the plane . Let be the intersections of the plane with the incident, reflected and refracted waves. Let be the inclinations of these waves to the refracting surface; let be the direction of the resolved part of the velocity of the æther, and let the angle .

The resolved part of in a direction perpendicular to is . Hence the wave travels with the velocity ; and consequently the line of its intersection