Theory of the Aberration of Light.
with the refracting surface travels along
A
B
{\displaystyle AB}
with the
Fig. 2.
velocity
c
o
s
e
c
ψ
{
V
+
q
sin
(
ψ
+
α
)
}
{\displaystyle \mathrm {cosec} \ \psi \left\{V+q\sin(\psi +\alpha )\right\}}
. Observing that
q
μ
2
{\displaystyle {\tfrac {q}{\mu ^{2}}}}
is the velocity of the æther within the refracting medium, and
V
μ
{\displaystyle {\tfrac {V}{\mu }}}
the velocity of propagation of light, we shall find in a similar manner that the lines of intersection of the refracting surface with the reflected and refracted waves travel along
A
B
{\displaystyle AB}
with velocities
c
o
s
e
c
ψ
′
{
V
+
q
sin
(
ψ
′
+
α
)
}
,
c
o
s
e
c
ψ
′
{
V
μ
+
q
μ
2
sin
(
ψ
′
+
α
)
}
{\displaystyle \mathrm {cosec} \ \psi _{'}\left\{V+q\sin(\psi _{'}+\alpha )\right\},\ \mathrm {cosec} \ \psi '\left\{{\frac {V}{\mu }}+{\frac {q}{\mu ^{2}}}\sin(\psi '+\alpha )\right\}}
But since the incident, reflected and refracted waves intersect the refracting surface in the same line, we must have
sin
ψ
′
{
V
+
q
sin
(
ψ
+
α
)
}
=
sin
ψ
{
V
+
q
sin
(
ψ
′
+
α
)
}
,
μ
sin
ψ
′
{
V
+
q
sin
(
ψ
+
α
)
}
=
sin
ψ
{
V
+
q
μ
sin
(
ψ
′
+
α
)
}
.
}
{\displaystyle \left.{\begin{aligned}\sin \psi _{'}\left\{V+q\sin(\psi +\alpha )\right\}=&\sin \psi \left\{V+q\sin(\psi _{'}+\alpha )\right\},\\\mu \sin \psi '\left\{V+q\sin(\psi +\alpha )\right\}=&\sin \psi \left\{V+{\frac {q}{\mu }}\sin(\psi '+\alpha )\right\}.\end{aligned}}\right\}}
(A)
Draw
H
S
{\displaystyle HS}
perpendicular to
A
H
{\displaystyle AH}
,
S
T
{\displaystyle ST}
parallel to
N
A
{\displaystyle NA}
, take
S
T
:
H
S
::
q
:
V
{\displaystyle ST:HS::q:V}
, and join
H
T
{\displaystyle HT}
. Then
H
T
{\displaystyle HT}
is the direction of the incident ray; and denoting the angles of incidence, reflexion and refraction by
ϕ
,
ϕ
′
,
ϕ
′
{\displaystyle \phi ,\phi _{'},\phi ^{'}}
, we have
ϕ
−
ψ
=
S
H
T
=
S
T
sin
S
S
H
=
1
V
×
{\displaystyle \phi -\psi =SHT={\frac {ST\sin S}{SH}}={\frac {1}{V}}\times }
resolved part of
q
{\displaystyle q}
along
A
H
{\displaystyle AH}
=
q
V
cos
(
ψ
+
α
)
{\displaystyle ={\frac {q}{V}}\cos(\psi +\alpha )}
. Similarly,
ϕ
′
−
ψ
′
=
q
V
cos
(
ψ
′
−
α
)
,
ϕ
′
−
ψ
′
=
q
μ
V
cos
(
ψ
′
+
α
)
:
{\displaystyle \phi _{'}-\psi _{'}={\frac {q}{V}}\cos \left(\psi _{'}-\alpha \right),\ \phi '-\psi '={\frac {q}{\mu V}}\cos \left(\psi '+\alpha \right):}
whence
sin
ψ
=
sin
ϕ
−
q
V
cos
ϕ
cos
(
ϕ
+
α
)
,
sin
ψ
′
=
sin
ϕ
′
−
q
V
cos
ϕ
′
cos
(
ϕ
′
−
α
)
,
sin
ψ
′
=
sin
ϕ
′
−
q
V
cos
ϕ
′
cos
(
ϕ
′
+
α
)
.
{\displaystyle {\begin{aligned}\sin \psi =&\sin \phi -{\frac {q}{V}}\cos \phi \cos(\phi +\alpha ),\\\sin \psi _{'}=&\sin \phi _{'}-{\frac {q}{V}}\cos \phi _{'}\cos(\phi _{'}-\alpha ),\\\sin \psi '=&\sin \phi '-{\frac {q}{V}}\cos \phi '\cos(\phi '+\alpha ).\end{aligned}}}