we perceive nothing. Thus all seems arranged, but are all the doubts dissipated? What would happen if one could communicate by non-luminous signals whose velocity of propagation differed from that of light? If, after having adjusted the watches by the optical procedure, we wished to verify the adjustment by the aid of these new signals, we should observe discrepancies which would render evident the common translation of the two stations. And are such signals inconceivable, if we admit with Laplace that universal gravitation is transmitted a million times more rapidly than light?
Thus, the principle of relativity has been valiantly defended in these latter times, but the very energy of the defense proves how serious was the attack.
Newton's Principle.—Let us speak now of the principle of Newton, on the equality of action and reaction. This is intimately bound up with the preceding, and it seems indeed that the fall of the one would involve that of the other. Thus we must not be astonished to find here the same difficulties.
Electrical phenomena, according to the theory of Lorentz, are due to the displacements of little charged particles, called electrons, immersed in the medium we call ether. The movements of these electrons produce perturbations in the neighboring ether; these perturbations propagate themselves in every direction with the velocity of light, and in turn other electrons, originally at rest, are made to vibrate when the perturbation reaches the parts of the ether which touch them. The electrons, therefore, act on one another, but this action is not direct, it is accomplished through the ether as intermediary. Under these conditions can there be compensation between action and reaction, at least for an observer who should take account only of the movements of matter, that is, of the electrons, and who should be ignorant of those of the ether that he could not see? Evidently not. Even if the compensation should be exact, it could not be simultaneous. The perturbation is propagated with a finite velocity; it, therefore, reaches the second electron only when the first has long ago entered upon its rest. This second electron, therefore, will undergo, after a delay, the action of the first, but will certainly not at that moment react upon it, since around this first electron nothing any longer budges.