Wikisource Page Game (step-by-step pagelist builder)
Open in Book2Scroll
Open file in BookReader
Purge file

Index:The Foundations of Science (1913).djvu

From Wikisource
Jump to navigation Jump to search
Title The Foundations of Science
Author Henri Poincaré
Translator George Bruce Halsted
Year 1913
Publisher The Science Press
Location New York
Source djvu
Progress To be proofread
Transclusion Index not transcluded or unreviewed
Pages (key to Page Status)
Cover i ii iii iv v vi vii viii ix x xi xii 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 Cover

CONTENTS

PAGE
Henri Poincaré xi
Author’s Preface to the Translation 3
SCIENCE AND HYPOTHESIS
Introduction by Royce 9
Introduction 27
Part I. Number and Magnitude
CHAPTER I.—On the Nature of Mathematical Reasoning 31
Syllogistie Deduction 31
Verification and Proof 32
Elements of Arithmetic 33
Reasoning by Recurrence 37
Induction 40
Mathematical Construction 41
CHAPTER II.—Mathematical Magnitude and Experience 43
Definition of Incommensurables 44
The Physical Continuum 46
Creation of the Mathematical Continuum 46
Measurable Magnitude 49
Various Remarks (Curves without Tangents) 50
The Physical Continuum of Several Dimensions 52
The Mathematical Continuum of Several Dimensions 58
Part II. Space
CHAPTER III.—The Non-Euclidean Geometries 55
The Bolyai-Lobachevski Geometry 56
Riemann’s Geometry 57
The Surfaces of Constant Curvature 58
Interpretation of Non-Euclidean Geometries 59
The Implicit Axioms 60
The Fourth Geometry 62
Lie’s Theorem 62
Riemann’s Geometries 63
On the Nature-of Axioms 63
CHAPTER IV.—Space and Geometry 66
Geometric Space and Perceptual Space 66
Visual Space 67
Tactile Space and Motor Space 68
Characteristics of Perceptual Space 69
Change of State and Change of Position 70
Conditions of Compensation 72
Solid Bodies and Geometry 73
Law of Homogeneity 74
The Non-Euclidean World 75
The World of Four Dimensions 78
Conclusions 79
Chapter V.—Experience and Geometry 81
Geometry and Astronomy 81
The Law of Relativity 83
Bearing of Experiments 86
Supplement (What is a Point?) 89
Ancestral Experience 91
Part III. Force
Chapter VI.—The Classic Mechanics 92
The Principle of Inertia 93
The Law of Acceleration 97
Anthropomorphic Mechanics 103
The School of the Thread 104
Chapter VII.—Relative Motion and Absolute Motion 107
The Principle of Relative Motion 107
Newton’s Argument 108
Chapter VIII.—Emergy and Thermodynamics 115
Energetics 115
Thermodynamics 119
General Conclusions on Part III 123
Part IV. Nature
Chapter IX.—Hypotheses in Physics 127
The Rôle of Experiment and Generalization 127
The Unity of Nature 130
The Rôle of Hypothesis 133
Origin of Mathematical Physics 136
Chapter X.—The Theories of Modern Physics 140
Meaning of Physical Theories 140
Physics and Mechanism 144
Present State of the Science 148
Chapter XI.—The Caleulus of Probabilities 155
Classification of the Problems of Probability 158
Probability in Mathematics 161
Probability in the Physical Sciences 164
Rouge et noir 167
The Probability of Causes 169
The Theory of Errors 170
Conclusions 172
Chapter XII.—Optics and Electricity 174
Fresnel’s Theory 174
Maxwell’s Theory 175
The Mechanical Explanation of Physical Phenomena 177
Chapter XIII.—Electrodynamics 184
Ampére’s Theory 184
Closed Currents 185
Action of a Closed Current on a Portion of Current 186
Continuous Rotations 187
Mutual Action of Two Open Currents 189
Induction 190
Theory of Helmholtz 191
Difficulties Raised by these Theories 193
Maxwell’s Theory 193
Rowland’s Experiment 194
The Theory of Lorentz 196
THE VALUE OF SCIENCE
Translator’s Introduction 201
Does the Scientist Create Science? 201
The Mind Dispelling Optical Illusions 202
Euclid not Necessary 202
Without Hypotheses, no Science 203
What Outcome? 203
Introduction 205
Part I. The Mathematical Sciences
Chapter I.—Intuition and Logie in Mathematics 210
Chapter II.—The Measure of Time 223
Chapter III.—The Notion of Space 235
Qualitative, Geometry 238
The Physical Continuum of Several Dimensions 240
The Notion of Point 244
The Notion of Displacement 247
Visual Space 252
Chapter IV.—Space and its Three Dimensions 256
The Group of Displacements 256
Identity of Two Points 259
Tactile Space 264
Identity of the Different Spaces 268
Space and Empiricism 271
Rôle of the Semicircular Canals 276
Part II. The Physical Sciences
Chapter V.—Analysis and Physics 279
Chapter VI.—Astronomy 289
Chapter VII.—The History of Mathematical Physics 297
The Physics of Central Forces 297
The Physics of the Principles 299
Chapter VIII.—The Present Crisis in Physics 303
The New Crisis 303
Carnot’s Principle 303
The Principle of Relativity 305
Newton’s Principle 308
Lavoisier’s Principle 310
Mayer’s Principle 312
Chapter IX.—The Future of Mathematical Physies 314
The Principles and Experiment 314
The Role of the Analyst 314
Aberration and Astronomy 315
Electrons and Spectra 316
Conventions preceding Experiment 317
Future Mathematical Physics 319
Part III. The Objective Value of Science
Chapter X.—Is Science Artificial? 321
The Philosophy of LeRoy 321
Science, Rule of Action 323
The Crude Fact and the Scientific Fact 325
Nominalism and the Universal Invariant 333
Chapter XI.—Science and Reality 340
Contingence and Determinism 340
Objectivity of Science 347
The Rotation of the Earth 353
Science for Its Own Sake 354
SCIENCE AND METHOD
Introduction 359
Book I. Science and the Scientist
Chapter I.—The Choice of Facts 362
Chapter II.—The Future of Mathematics 369
Chapter III.—Mathematical Creation 383
Chapter IV.—Chance 395
Book II. Mathematical Reasoning
Chapter I.—The Relativity of Space 413
Chapter II.—Mathematical Definitions and Teaching 430
Chapter III.—Mathematics and Logic 448
Chapter IV.—The New Logics 460
Chapter V.—The Latest Efforts of the Logisticians 472
Book III. The New Mechanics
Chapter I.—Mechanics and Radium 486
Chapter II.—Mechanics and Optics 496
Chapter III.—The New Mechanics and Astronomy 515
Book IV. Astronomic Science
Chapter I.—The Milky Way and the Theory of Gases 522
Chapter I.—French Geodesy 535
General Conclusions 544
Index 547