Page:The Foundations of Science (1913).djvu/47

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
INTRODUCTION
29

What is the nature of mathematical reasoning? Is is really deductive, as is commonly supposed? A deeper analysis shows us that it is not, that it partakes in a certain measure of the nature of inductive reasoning, and just because of this is it so fruitful. None the less does it retain its character of rigor absolute; this is the first thing that had to be shown.

Knowing better now one of the instruments which mathematics puts into the hands of the investigator, we had to analyze another fundamental notion, that of mathematical magnitude. Do we find it in nature, or do we ourselves introduce it there? And, in this latter case, do we not risk marring everything? Comparing the rough data of our senses with that extremely complex and subtile concept which mathematicians call magnitude, we are forced to recognize a difference; this frame into which we wish to force everything is of our own construction; but we have not made it at random. We have made it, so to speak, by measure and therefore we can make the facts fit into it without changing what is essential in them.

Another frame which we impose on the world is space. Whence come the first principles of geometry? Are they imposed on us by logic? Lobachevski has proved not, by creating non-Euclidean geometry. Is space revealed to us by our senses? Still no, for the space our senses could show us differs absolutely from that of the geometer. Is experience the source of geometry? A deeper discussion will show us it is not. We therefore conclude that the first principles of geometry are only conventions; but these conventions are not arbitrary and if transported into another world (that I call the non-Euclidean world and seek to imagine), then we should have been led to adopt others.

In mechanics we should be led to analogous conclusions, and should see that the principles of this science, though more directly based on experiment, still partake of the conventional character of the geometric postulates. Thus far nominalism triumphs; but now we arrive at the physical sciences, properly so called. Here the scene changes; we meet another sort of hypotheses and we see their fertility. Without doubt, at first blush, the theories seem to us fragile, and the history of science proves to us how ephemeral they are; yet they do not entirely perish,