light, remaining rigorously spherical, will seem to him elongated ellipsoids.
What happens then? Suppose an observer and a source of light carried along together in the translation: the wave surfaces emanating from the source will be spheres having as centers the successive positions of the source; the distance from this center to the actual position of the source will be proportional to the time elapsed after the emission, that is to say to the radius of the sphere. All these spheres are therefore homothetic one to the other, with relation to the actual position S of the source. But, for our observer, because of the contraction, all these spheres will seem elongated ellipsoids, and all these ellipsoids will moreover be homothetic, with reference to the point S; the excentricity of all these ellipsoids is the same and depends solely upon the velocity of the earth. We shall so select the law of contraction that the point S may be at the focus of the meridian section of the ellipsoid.
This time the compensation is rigorous, and this it is which explains Michelson’s experiment.
I have said above that, according to the ordinary theories, observations of the astronomic aberration would give us the absolute velocity of the earth, if our instruments were a thousand times more precise. I must modify this statement. Yes, the observed angles would be modified by the effect of this absolute velocity, but the graduated circles we use to measure the angles would be deformed by the translation: they would become ellipses; thence would result an error in regard to the angle measured, and this second error would exactly compensate the first.
This Lorentz-Fitzgerald hypothesis seems at first very extraordinary; all we can say for the moment, in its favor, is that it is only the immediate translation of Michelson’s experimental result, if we define lengths by the time taken by light to run along them.
However that may be, it is impossible to escape the impression that the principle of relativity is a general law of nature, that one will never be able by any imaginable means to show any but relative velocities, and I mean by that not only the